Combining Pattern Recognition Modalities at the Sensor Level Via Kernel Fusion

  • Vadim Mottl
  • Alexander Tatarchuk
  • Valentina Sulimova
  • Olga Krasotkina
  • Oleg Seredin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4472)


The problem of multi-modal pattern recognition is considered under the assumption that the kernel-based approach is applicable within each particular modality. The Cartesian product of the linear spaces into which the respective kernels embed the output scales of single sensor is employed as an appropriate joint scale corresponding to the idea of combining modalities, actually, at the sensor level. From this point of view, the known kernel fusion techniques, including Relevance and Support Kernel Machines, offer a toolkit of combining pattern recognition modalities. We propose an SVM-based quasi-statistical approach to multi-modal pattern recognition which covers both of these modes of kernel fusion.


Kernel-based pattern recognition support vector machines combining modalities kernel fusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ross, A., Jain, A.K.: Multimodal biometrics: An overview. In: Proceedings of the 12th European Signal Processing Conference (EUSIPCO), Vienna, Austria, pp. 1221–1224 (2004)Google Scholar
  2. 2.
    Jannin, P., et al.: A data fusion environment for multimodal and multi-informational neuronavigation. Comput. Aided Surg. 5(1), 1–10 (2000)CrossRefGoogle Scholar
  3. 3.
    Multiple Classifier Systems. Proceedings of the 1st - 6th International Workshops: Lecture Notes in Computer Science, Springer, 2001, 2002, 2003, 2004, 2005.Google Scholar
  4. 4.
    Aizerman, M.A., Braverman, E.M., Rozonoer, L.I.: Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control 25, 821–837 (1964)MathSciNetGoogle Scholar
  5. 5.
    Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, Chichester (1998)zbMATHGoogle Scholar
  6. 6.
    Mottl, V.: Metric spaces admitting linear operations and inner product. Doklady Mathematics 67(1), 140–143 (2003)zbMATHGoogle Scholar
  7. 7.
    Bach, F.R., Lankriet, G.R.G., Jordan, M.I.: Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of the 21th International Conference on Machine Learning, Banff, Canada (2004)Google Scholar
  8. 8.
    Sonnenburg, S., Rätsch, G., Schäfer, C.: A general and efficient multiple kernel learning algorithm. In: Proceedings of the 19th Annual Conference on Neural Information Processing Systems, Vancouver, Canada, December 5-8 (2005)Google Scholar
  9. 9.
    Mottl, V., et al.: Principles of multi-kernel data mining. In: Perner, P., Imiya, A. (eds.) MLDM 2005. LNCS (LNAI), vol. 3587, pp. 52–61. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Mottl, V., et al.: Kernel fusion and feature selection in machine learning. In: Proceedings of the 8th IASTED International Conference on Intelligent Systems and Control, Cambridge, USA, Oct. 31 - Nov. 2 (2005)Google Scholar
  11. 11.
    Bishop, C.M., Tipping, M.E.: Variational relevance vector machines. In: Boutilier, C., Goldszmidt, M. (eds.) Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pp. 46–53. Morgan Kaufmann, San Francisco (2000)Google Scholar
  12. 12.
    Sulimova, V., Mottl, V., Tatarchuk, A.: Multi-kernel approach to on-line signature verification. In: Proceedings of the 8th IASTED International Conference on Signal and Image Processing, Honolulu, Hawaii, USA, August 14-16 (2006)Google Scholar
  13. 13.
    Windridge, D., et al.: The Neutral Point Method for Kernel-Based Combination of Disjoint Training Data in Multi-modal Pattern Recognition. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 13–21. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Vadim Mottl
    • 1
  • Alexander Tatarchuk
    • 1
  • Valentina Sulimova
    • 1
  • Olga Krasotkina
    • 1
  • Oleg Seredin
    • 2
  1. 1.Computing Center of the Russian Academy of Sciences, Vavilov St., 40, 117968 MoscowRussia
  2. 2.Tula State University, Lenin Ave. 92, 300600 TulaRussia

Personalised recommendations