Advertisement

Abstract

This tutorial presents an overview of model checking for both discrete and continuous-time Markov chains (DTMCs and CTMCs). Model checking algorithms are given for verifying DTMCs and CTMCs against specifications written in probabilistic extensions of temporal logic, including quantitative properties with rewards. Example properties include the probability that a fault occurs and the expected number of faults in a given time period. We also describe the practical application of stochastic model checking with the probabilistic model checker PRISM by outlining the main features supported by PRISM and three real-world case studies: a probabilistic security protocol, dynamic power management and a biological pathway.

Keywords

Model Check Temporal Logic Queue Size Atomic Proposition Reward Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Henzinger, T.: Reactive modules. Formal Methods in System Design 15(1), 7–48 (1999)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Aspnes, J., Herlihy, M.: Fast randomized consensus using shared memory. Journal of Algorithms 15(1), 441–460 (1990)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model checking continuous time Markov chains. ACM Transactions on Computational Logic 1(1), 162–170 (2000)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Aziz, A., Singhal, V., Balarin, F., Brayton, R., Sangiovanni-Vincentelli, A.: It usually works: The temporal logic of stochastic systems. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 155–165. Springer, Heidelberg (1995)Google Scholar
  7. 7.
    Bahar, I., Frohm, E., Gaona, C., Hachtel, G., Macii, E., Pardo, A., Somenzi, F.: Algebraic decision diagrams and their applications. Formal Methods in System Design 10(2-3), 171–206 (1997)CrossRefGoogle Scholar
  8. 8.
    Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model checking continuous-time Markov chains by transient analysis. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 358–372. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: On the Logical Characterisation of Performability Properties. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 780–792. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for continuous-time Markov chains. IEEE Transactions on Software Engineering 29(6), 524–541 (2003)CrossRefGoogle Scholar
  11. 11.
    Baier, C., Katoen, J.-P., Hermanns, H., Haverkort, B.R.: Simulation for Continuous-Time Markov Chains. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 338–354. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Baier, C., Katoen, J.-P., Hermanns, H.: Approximate Symbolic Model Checking of Continuous-Time Markov Chains (Extended Abstract). In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 146–161. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Baier, C., Kwiatkowska, M.: Model checking for a probabilistic branching time logic with fairness. Distributed Computing 11(3), 125–155 (1998)CrossRefGoogle Scholar
  14. 14.
    Benini, L., Bogliolo, A., Paleologo, G., Micheli, G.D.: Policy optimization for dynamic power management. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 8(3), 299–316 (2000)Google Scholar
  15. 15.
    Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995)Google Scholar
  16. 16.
    Billingsley, P.: Probability and Measure. Wiley, Chichester (1995)zbMATHGoogle Scholar
  17. 17.
    Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. Journal of Applied Probability 31, 59–75 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Cheung, L.: Randomized Wait-Free Consensus Using an Atomicity Assumption. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 47–60. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Ciardo, G., Jones, R., Miner, A., Siminiceanu, R.: Logic and stochastic modeling with smart. Performance Evaluation 63(6), 578–608 (2006)CrossRefGoogle Scholar
  20. 20.
    Clarke, E., Emerson, E., Sistla, A.: Automatic verification of finite-state concurrent systems using temporal logics. ACM Transactions on Programming Languages and Systems 8(2), 244–263 (1986)zbMATHCrossRefGoogle Scholar
  21. 21.
    Clarke, E., Fujita, M., McGeer, P., McMillan, K., Yang, J., Zhao, X.: Multi-terminal binary decision diagrams: An efficient data structure for matrix representation. Formal Methods in System Design 10(2-3), 149–169 (1997)Google Scholar
  22. 22.
    Courcoubetis, C., Yannakakis, M.: Verifying temporal properties of finite state probabilistic programs. In: Proc. 29th Annual Symposium on Foundations of Computer Science (FOCS’88), 1988, pp. 338–345. IEEE Computer Society Press, Los Alamitos (1988)CrossRefGoogle Scholar
  23. 23.
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. Journal of the ACM 42(4), 857–907 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Daws, C., Kwiatkowska, M., Norman, G.: Automatic verification of the IEEE 1394 root contention protocol with KRONOS and PRISM. Int. Journal on Software Tools for Technology Transfer 5(2-3), 221–236 (2004)CrossRefGoogle Scholar
  25. 25.
    Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Communications of the ACM 28(6), 637–647 (1985)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Fokkink, W., Pang, J.: Variations on itai-rodeh leader election for anonymous rings and their analysis in prism. Journal of Universal Computer Science 12(8), 981–1006 (2006)Google Scholar
  27. 27.
    Fox, B., Glynn, P.: Computing Poisson probabilities. Communications of the ACM 31(4), 440–445 (1988)CrossRefMathSciNetGoogle Scholar
  28. 28.
    German, R.: Performance Analysis of Communication Systems: Modeling with Non-Markovian Stochastic Petri Nets. John Wiley and Sons, Chichester (2000)zbMATHGoogle Scholar
  29. 29.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6(5), 512–535 (1994)zbMATHCrossRefGoogle Scholar
  30. 30.
    Haverkort, B.: Performance of Computer Communication Systems: A Model-Based Approach. John Wiley & Sons, Chichester (1988)Google Scholar
  31. 31.
    Haverkort, B., Cloth, L., Hermanns, H., Katoen, J.-P., Baier, C.: Model checking performability properties. In: Proc. Int. Conf. Dependable Systems and Networks (DSN’02), 2002, IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  32. 32.
    Heath, J.K., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic Model Checking of Complex Biological Pathways. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 32–47. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  33. 33.
    Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 73–84. Springer, Heidelberg (2004)Google Scholar
  34. 34.
    Hermanns, H., Katoen, J.-P., Meyer-Kayser, J., Siegle, M.: A Markov Chain Model Checker. In: Schwartzbach, M.I., Graf, S. (eds.) ETAPS 2000 and TACAS 2000. LNCS, vol. 1785, pp. 347–362. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  35. 35.
    Hermanns, H., Katoen, J.-P., Meyer-Kayser, J., Siegle, M.: Towards model checking stochastic process algebra. In: Grieskamp, W., Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945, pp. 420–439. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  36. 36.
    Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A Tool for Automatic Verification of Probabilistic Systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  37. 37.
    IEEE standard for a high performance serial bus. IEEE Computer Society, IEEE Std. 1394-1995.Google Scholar
  38. 38.
    Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Information and Computation 88(1), 60–87 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Katoen, J.-P., Khattri, M., Zapreev, I.: A Markov reward model checker. In: Proc. Second Int. Conf. Quantitative Evaluation of Systems (QEST 05), 2005, pp. 243–244. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  40. 40.
    Katoen, J.-P., Kwiatkowska, M., Norman, G., Parker, D.: Faster and Symbolic CTMC Model Checking. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 23–38. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  41. 41.
    Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains, 2nd edn. Springer, Heidelberg (1976)zbMATHGoogle Scholar
  42. 42.
    Kwiatkowska, M., Norman, G., Pacheco, A.: Model Checking CSL until Formulae with Random Time Bounds. In: Hermanns, H., Segala, R. (eds.) PROBMIV 2002, PAPM-PROBMIV 2002, and PAPM 2002. LNCS, vol. 2399, pp. 152–168. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  43. 43.
    Kwiatkowska, M., Norman, G., Pacheco, A.: Model checking expected time and expected reward formulae with random time bounds. In: Proc. 2nd Euro-Japanese Workshop on Stochastic Risk Modelling for Finance, Insurance, Production and Reliability (September 2002)Google Scholar
  44. 44.
    Kwiatkowska, M., Norman, G., Pacheco, A.: Model checking expected time and expected reward formulae with random time bounds. Computers & Mathematics with Applications 51(2), 305–316 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM users’ guide. Available from http://www.cs.bham.ac.uk/~dxp/prism
  46. 46.
    Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with PRISM: A hybrid approach. Int. Journal on Software Tools for Technology Transfer 6(2), 128–142 (2004)Google Scholar
  47. 47.
    Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance analysis of probabilistic timed automata using digital clocks. Formal Methods in System Design 29, 33–78 (2006)zbMATHCrossRefGoogle Scholar
  48. 48.
    Kwiatkowska, M., Parker, D., Zhang, Y., Mehmood, R.: Dual-processor parallelisation of symbolic probabilistic model checking. In: DeGroot, D., Harrison, P. (eds.) Proc. 12th Int. Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’04), pp. 123–130. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  49. 49.
    Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94, 1–28 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Norman, G., Parker, D., Kwiatkowska, M., Shukla, S., Gupta, R.: Using probabilistic model checking for dynamic power management. Formal Aspects of Computing 17(2), 160–176 (2005)zbMATHCrossRefGoogle Scholar
  51. 51.
    Norman, G., Shmatikov, V.: Analysis of probabilistic contract signing. Journal of Computer Security 14(6), 561–589 (2006)Google Scholar
  52. 52.
    Parker, D.: Implementation of Symbolic Model Checking for Probabilistic Systems. PhD thesis, University of Birmingham (2002)Google Scholar
  53. 53.
  54. 54.
    Qiu, Q., Wu, Q., Pedram, M.: Stochastic modeling of a power-managed system: Construction and optimization. In: Proc. Int. Symposium on Low Power Electronics and Design (1999)Google Scholar
  55. 55.
    Qiu, Q., Wu, Q., Pedram, M.: Stochastic modeling of a power-managed system: construction and optimization. IEEE Transactions on Computer Aided Design 20(10), 1200–1217 (2001)CrossRefGoogle Scholar
  56. 56.
    Rutten, J., Kwiatkowska, M., Norman, G., Parker, D.: Mathematical Techniques for Analyzing Concurrent and Probabilistic Systems. CRM Monograph Series, vol. 23. American Mathematical Society, New York (2004)zbMATHGoogle Scholar
  57. 57.
    Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  58. 58.
    Somenzi, F.: CUDD: Colorado University decision diagram package. Public software, Colorado Univeristy, Boulder (1997), http://vlsi.colorado.edu/~fabio/
  59. 59.
    Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton (1994)Google Scholar
  60. 60.
    Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Computing 1, 146–160 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Trivedi, K.: Probability and Statistics with Reliability, Queuing, and Computer Science Applications. John Wiley & Sons, Chichester (2001)Google Scholar
  62. 62.
    Vardi, M.: Automatic verification of probabilistic concurrent finite state programs. In: Proc. 26th Annual Symposium on Foundations of Computer Science (FOCS’85), 1985, pp. 327–338. IEEE Computer Society Press, Los Alamitos (1985)Google Scholar
  63. 63.
    Younes, H., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical probabilistic model checking. Int. Journal on Software Tools for Technology Transfer 8(3), 216–228 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Marta Kwiatkowska
    • 1
  • Gethin Norman
    • 1
  • David Parker
    • 1
  1. 1.School of Computer Science, University of Birmingham, Edgbaston, Birmingham B15 2TTUnited Kingdom

Personalised recommendations