The Undecidability of the Generalized Collatz Problem

  • Stuart A. Kurtz
  • Janos Simon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4484)

Abstract

The Collatz problem, widely known as the 3x + 1 problem, asks whether or not a certain simple iterative process halts on all inputs. In this paper, we build on work of J. H. Conway to show that a natural generalization of the Collatz problem is \({\it \Pi}^0_2\) complete.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Collatz, L.: On the origin of the (3n+1) problem. Journal of Qufu Normal University, Natural Science Edition 12(3), 9–11 (1986)Google Scholar
  2. 2.
    Lagarias, J.C.: The 3x+1 problem: An annotated bibliography (1963–2000). ArXiv math (NT0608208) (2006)Google Scholar
  3. 3.
    Lagarias, J.C.: The 3x+1 problem and its generalizations. American Mathematics Monthly 92(1), 3–23 (1985)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Wirsching, G.J.: The Dynamical System Generated by the 3n+1 Function. Lecture Notes in Mathematics, vol. 1681. Springer, Berlin (1981)Google Scholar
  5. 5.
    Matthews, K.R.: The generalized 3x + 1 mapping (2006)Google Scholar
  6. 6.
    Conway, J.H.: Unpredictable iterations. In: Number Theory Conference, University of Colorado, Boulder, 1972, pp. 49–52 (1972)Google Scholar
  7. 7.
    Conway, J.H.: Fractran, a simple universal computing language for arithmetic. In: Clover, T.M., Gopinath, B. (eds.) Open Problems in Communication and Computation, pp. 3–27. Springer, Heidelberg (1987)Google Scholar
  8. 8.
    Rogers, H.: Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge (1987)Google Scholar
  9. 9.
    Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and other topics in the theory of Turing machines. Annals of Mathematics 74(3), 437–455 (1961)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Stuart A. Kurtz
    • 1
  • Janos Simon
    • 1
  1. 1.Department of Computer Science, The University of Chicago 

Personalised recommendations