Savings in Combinatorial Auctions Through Transformation Relationships

  • Andrea Giovannucci
  • Jesús Cerquides
  • Juan A. Rodríguez-Aguilar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4452)


In a previous work we extended the notion of multi-unit combinatorial reverse auction (MUCRA) by adding a new dimension to the goods at auction. A buyer can express transformability relationships among goods: some goods can be transformed into others at a transformation cost. Through this new auction type, a buyer can find out what goods to buy, to whom, and what transformations to apply to the acquired goods in order to obtain the best savings. The main focus of the paper is to perform some preliminary experiments to quantitatively assess the potential savings that a buying agent may obtain in considering transformation relationships.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack problem. Journal of Heuristics 4, 63–86 (1998)MATHCrossRefGoogle Scholar
  2. 2.
    Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial Auctions. MIT Press, Cambridge (2006)Google Scholar
  3. 3.
    Giovannucci, A., Rodríguez-Aguilar, J.A., Cerquides, J.: Multi-unit combinatorial reverse auctions with transformability relationships among goods. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Hogg, R.V., Ledolter, J.: Engineering Statistics. Macmillan Publishing Company, Basingstoke (1987)Google Scholar
  5. 5.
    Holte, R.C.: Combinatorial auctions, knapsack problems, and hill-climbing search. In: Stroulia, E., Matwin, S. (eds.) Advances in Artificial Intelligence. LNCS (LNAI), vol. 2056, Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Jensen, K.: Coloured Petri Nets, Basic Concepts, Analysis Methods and Practical Use, vol. 1. Monographs in Theoretical Computer Science. An EATCS Series, pp. 78–80. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Leyton-Brown, K., Shoham, Y., Tennenholtz, M.: An algorithm for multi-unit combinatorial auctions. In: Proceedings of the AAAI Conference, pp. 56–61 (2000)Google Scholar
  8. 8.
    Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  9. 9.
    Rothkopf, M.H., Pekec, A., Harstad, R.M.: Computationally manageable combinational auctions. Management Science 44(8), 1131–1147 (1998)MATHCrossRefGoogle Scholar
  10. 10.
    Sandholm, T., et al.: Winner determination in combinatorial auction generalizations. In: AAMAS ’02, pp. 69–76. ACM Press, New York (2002)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Andrea Giovannucci
    • 1
  • Jesús Cerquides
    • 2
  • Juan A. Rodríguez-Aguilar
    • 1
  1. 1.Artificial Intelligence Research Institute, IIIA-CSICSpain
  2. 2.Dept. de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, BarcelonaSpain

Personalised recommendations