Granulation Based Approximate Ontologies Capture

  • Taorong Qiu
  • Xiaoqing Chen
  • Qing Liu
  • Houkuan Huang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4481)


Ontologies are of vital importance to the successful realization of semantic Web. Currently, the existing concepts in ontologies are not approximate but clear. However, in real application domains many concepts are difficult to define explicitly. In order to fulfill semantic Web, it’s not only necessary but also important to study approximate concepts and approximate ontologies generated from the approximate concepts. In this paper, based on the principle of granular computing, a granulation model for representing approximate ontologies was constructed. Then algorithms for capturing approximate concepts and generating approximate ontologies were proposed and illustrated with a real example.


Concept approximation granular computing ontologies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klinov, P., Mazlack, L.J.: Granulating Semantic Web Ontologies. In: The Proceedings of International Conference on Granular Computing, IEEE, Atlanta, Georgia, USA, pp. 225–229 (2006)Google Scholar
  2. 2.
    Stoilos, G., et al.: Fuzzy OWL: Uncertainty And The Semantics Web. In: Proc. Of the International Workshop on OWL: Experience and Directions (2005)Google Scholar
  3. 3.
    Straccia, U.: Towards A Fuzzy Description Logic For The semantic Web. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 167–181. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Doherty, P., et al.: Towards A Framework For Approximate Ontologies. Fundamenta Informaticae 57, 147–165 (2003)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Liu, Q.: Rough Sets and Rough Reasoning. Science Press, Beijing (2003)Google Scholar
  6. 6.
    Liu, Q.: Granules and Applications of Granular Computing in Logical Reasoning (in Chinese). Journal of Computer Research and Development 41, 546–551 (2004)Google Scholar
  7. 7.
    Zadeh, L.A.: Fuzzy Sets and Information Granularity. In: Gupta, M., Ragade, R., Yager, R. (eds.) Advances in Fuzzy Sets Theory and Applications, pp. 3–18. North Holland, Amsterdam (1979)Google Scholar
  8. 8.
    Stepaniuk, J., Skowron, A.: Ontological Framework for Approximation. In: Ślęzak, D., et al. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 718–727. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Yao, Y.Y.: Perspectives of Granular Computing. In: Proceedings of IEEE International Conference on granular computing, Beijing, China, pp. 85–90 (2005)Google Scholar
  10. 10.
    Studer, R., Benjamins, V.R., Fensel, D.: Knowledge Engineering Principles and Methods. Data and Knowledge Engineering 25, 161–197 (1998)zbMATHCrossRefGoogle Scholar
  11. 11.
    Poli, P.: Ontological Methodology. Int. J. Human-Computer Studies 56, 639–664 (2002)CrossRefGoogle Scholar
  12. 12.
    Deng, Z.H., Tang, S.W., Zhang, M.: Overview of Ontology. Journal of Peking University (natural Science, In Chinese) 38, 730–737 (2002)Google Scholar
  13. 13.
    Yao, Y.Y.: Granular Computing (in Chinese). Computer Science 31, 1–5 (2004)CrossRefGoogle Scholar
  14. 14.
    Lin, T.Y.: Granular Computing II: Infrastructures for AI-Engineering. In: The Proceedings of International Conference on Granular Computing, IEEE, Atlanta, USA, pp. 2–7 (2006)Google Scholar
  15. 15.
    Du, X.Y., Li, M., Wang, S.: A Survey on Ontology Learning Research (in Chinese). Journal of Software 17, 1837–1847 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Taorong Qiu
    • 1
    • 2
  • Xiaoqing Chen
    • 1
    • 2
  • Qing Liu
    • 2
  • Houkuan Huang
    • 1
  1. 1.School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044China
  2. 2.Department of Computer, Nanchang University, Nanchang, Jiangxi 330031China

Personalised recommendations