Advertisement

Coping with the Cone of Uncertainty: An Empirical Study of the SAIV Process Model

  • Da Yang
  • Barry Boehm
  • Ye Yang
  • Qing Wang
  • Mingshu Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4470)

Abstract

There is large uncertainty with the software cost in the early stages of software development due to requirement volatility, incomplete understanding of product domain, reuse opportunities, market change, etc. This makes it an increasingly challenging issue to deliver software on time, within budget, and with satisfactory quality in the IT field. In this paper, we introduce the Schedule as Independent Variable (SAIV) approach, and present the empirical study of how it is used to cope with the uncertainty of cost, and deliver customer satisfactory products in 8 USC (University of Southern California) projects. We also investigate the success factors and best practices in managing the uncertainty of cost.

Keywords

process model SAIV cost estimation cone of uncertainty 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boehm, B., Abts, C., Chulani, S.: Software Development Cost Estimation Approaches – A Survey. Annals of Software Engineering 10, 177–205 (2000)zbMATHCrossRefGoogle Scholar
  2. 2.
    Lederer, A.L., Prasad, J.: Nine Management Guidelines for Better Cost Estimating. Communications of the ACM 35(2), 51–59 (1992)CrossRefGoogle Scholar
  3. 3.
    Jørgensen, M.: Evidence-Based Guidelines for Assessment of Software Development Cost Uncertainty. IEEE Transactions on Software Engineering 31(11) (2005)Google Scholar
  4. 4.
    Little, T.: Schedule Estimation and Uncertainty Surrounding the Cone of Uncertainty. IEEE Software (May/June 2006)Google Scholar
  5. 5.
    Boehm, B., et al.: Software Cost Estimation with COCOMO II. Prentice-Hall, Englewood Cliffs (2000)Google Scholar
  6. 6.
    McConnell, S.: Rapid Development: Taming Wild Software Schedules. Microsoft Press, Redmond (1996)Google Scholar
  7. 7.
    Gryphon, S., et al.: Letters: The Cone of Uncertainty. IEEE Software 23(5), 8–10 (2006)CrossRefGoogle Scholar
  8. 8.
    Kitchenham, B., Linkman, S.: Estimates, Uncertainty, and Risk. Software (May 1997)Google Scholar
  9. 9.
    Cantor, M.: Estimation Variance and Governance, http://www-128.ibm.com/developerworks/rational/library/mar06/cantor/
  10. 10.
    Brooks, F.P.: The Mythical Man-Month. Addison-Wesley, Reading (1995)Google Scholar
  11. 11.
    Boehm, B., Brown, W.: Mastering Rapid Delivery and Change with the SAIV Process Model. In: Proceedings, ESCOM2001 (Apr. 2001)Google Scholar
  12. 12.
    Putnam, L.: Software Life Cycle Model (SLIM), QSM (2001), http://www.qsm.com
  13. 13.
    Galorath, D.: SEER-SEM, Galorath, Inc. (2001), http://www.galorath.com
  14. 14.
    Jones, C.: Knowledge PLAN, Artemis/SPR (2001), http://www.spr.com
  15. 15.
    Briand, L.C., Emam, K., Bomarius, F.: COBRA: A Hybrid Method for Software Cost Estimation, Benchmarking, and Risk Assessment. In: Proceedings of the 20th international conference on Software engineering, pp. 390–399. IEEE CS Press, Washington (1998)CrossRefGoogle Scholar
  16. 16.
    Pendharkar, P.C., Subramanian, G.H., Rodger, J.A.: A Probabilistic Model for predicting software development Effort. In: IEEE Transactions on Software Engineering, 615–624 (July 2005)Google Scholar
  17. 17.
    Li, M., et al.: COCOMO-U: An Extension of COCOMO II for Cost Estimation with Uncertainty. In: Wang, Q., et al. (eds.) SPW 2006 and ProSim 2006. LNCS, vol. 3966, pp. 132–141. Springer, Heidelberg (2006)Google Scholar
  18. 18.
    Boehm, B., et al.: Using the Spiral Model and MBASE to Generate New Acquisition Process Models, SAIV, CAIV, and SCQAIV. Cross Talk (Jan. 2002)Google Scholar
  19. 19.
    Boehm, W., et al.: Guidelines for Lean Model-Based Architecting and Software Engineering (Lean MBASE), http://greenbay.usc.edu/csci577/spring2006/site/guidelines/LeanMBASE_Guidelines_V1.5.pdf
  20. 20.
    Boehm, B.: Anchoring the Software Process. IEEE Software, 73–82 (Jul. 1996)Google Scholar
  21. 21.
    Royce, W.E.: Software Project Management: A Unified Framework. Addison-Wesley, Reading (1998)Google Scholar
  22. 22.
    Boehm, B.: The Art of Expectations Management. Computer (Jan. 2000)Google Scholar
  23. 23.
    Yourdon, E.: Death March. Prentice-Hall, Englewood Cliffs (1997)Google Scholar
  24. 24.
    Boehm, B.: Software Risk Management. IEEE Computer Society Press, Los Alamitos (1989)Google Scholar
  25. 25.
    Bryman, A., Cramer, D.: Quantitative Data Analysis with SPSS. Routledge, New York (2005)Google Scholar
  26. 26.
    Cohen, L., Holliday, M.: Statistics for Social Scientists. Harper & Row, London (1982)Google Scholar
  27. 27.
    Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed. Addison-Wesley Professional, Reading (2003)Google Scholar
  28. 28.
    Boehm, B., Port, D., Jain, A.: Achieving CMMI Level 5 Improvements with MBASE and the CeBASE Method. Cross Talk (May 2002)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Da Yang
    • 1
    • 3
  • Barry Boehm
    • 2
  • Ye Yang
    • 2
  • Qing Wang
    • 1
  • Mingshu Li
    • 1
  1. 1.Laboratory for Internet Software Technologies, Institute of Software, Chinese Academy of Sciences, Beijing 100080China
  2. 2.University of Southern California, 941 w. 37th Place Los Angeles, CA 90089-0781 
  3. 3.Graduate University of Chinese Academy of Sciences, Beijing 100039China

Personalised recommendations