Project Delay Variability Simulation in Software Product Line Development

  • Makoto Nonaka
  • Liming Zhu
  • Muhammad Ali Babar
  • Mark Staples
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4470)

Abstract

The possible variability of project delay is useful information to understand and mitigate the project delay risk. However, it is not sufficiently considered in the literature concerning effort estimation and simulation in software product line development. In this paper, we propose a project delay simulation model by introducing a random variable to represent the variability of adaptive rework. The model has been validated through stochastic simulations by comparing generated adaptive rework to an actual change effort distribution, and by sensitivity analysis. The result shows that the proposed model is capable of producing reasonable variability of adaptive rework, and consequently, variability of project delay. Analysis of our model indicates that the strength of dependency has a larger impact than the number of residual defects, for the studied simulation settings. However, high levels of adaptive rework variability did not have great impact on overall project delay.

Keywords

process simulation software product line development product quality project planning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clements, P., Northrop, L.M.: Software Product Lines: Practices and Patterns. Addison-Wesley, Reading (2001)Google Scholar
  2. 2.
    Schmid, K., Biffl, S.: Systematic management of software product lines. Softw. Process Improve. Pract. 10, 61–76 (2005)CrossRefGoogle Scholar
  3. 3.
    van Genuchten, M.: Why is software late? an empirical study of reasons for delay in software development. IEEE Trans. Softw. Eng. 17(6) (1991)Google Scholar
  4. 4.
    Subramanian, G.H., Breslawski, S.: An empirical analysis of software effort estimate alterations. J. Systems and Software 31(2), 135–141 (1995)CrossRefGoogle Scholar
  5. 5.
    Dijkstra, E.: Notes on structured programming. In: Dahl, O.J., Dijkstra, E., Hoare, C.A.R. (eds.) Structured Programming, Academic Press, London (1972)Google Scholar
  6. 6.
    IEEE: IEEE std. 1219-1998, IEEE standard for software maintenance (1998)Google Scholar
  7. 7.
    Nonaka, M., Azuma, M.: Software delivery estimation model for incremental and iterative development process considering undetected design defects (in japanese). In: Proc. Software Symposium 2003, pp. 107–114 (2003)Google Scholar
  8. 8.
    Jørgensen, M.: Realism in assessment of effort estimation uncertainty: It matters how you ask. IEEE Trans. Softw. Eng. 30, 209–217 (2004)CrossRefGoogle Scholar
  9. 9.
    Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E., Madachy, R., Reifer, D., Steece, B.: Software Cost Estimation with COCOMO II. Prentice-Hall, Englewood Cliffs (2000)Google Scholar
  10. 10.
    Boehm, B.W., Brown, A.W., Madachy, R., Yang, Y.: A software product line life cycle cost estimation model. In: Proc. 2004 Intl. Symp. Empirical Softw. Eng (ISESE’04), pp. 156–164 (2004)Google Scholar
  11. 11.
    Chen, Y., Gannod, G.C., Collofello, J.S.: A software product line process simulator. Softw. Process Improve. Pract. 11, 385–409 (2006)CrossRefGoogle Scholar
  12. 12.
    Yang, D., Wan, Y., Tang, Z., Wu, S., He, M., Li, M.: COCOMO-U: An Extension of COCOMO II for Cost Estimation with Uncertainty. In: Wang, Q., Pfahl, D., Raffo, D.M., Wernick, P. (eds.) SPW 2006 and ProSim 2006. LNCS, vol. 3966, pp. 132–141. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Donzelli, P.: A decision support system for software project management. IEEE Software 23(4), 67–75 (2006)CrossRefGoogle Scholar
  14. 14.
    Abdel-Hamid, T., Madnick, S.: Software Project Dynamics- An Integrated Approach. Prentice-Hall, Englewood Cliffs (1991)Google Scholar
  15. 15.
    Calavaro, G.F., Basili, V.R., Iazeolla, G.: Simulation modeling of software development process. In: Proc. 7th European Simulation Symposium, Soc. for Computer Simulation (1995)Google Scholar
  16. 16.
    Hansen, G.A.: Simulating software development processes. IEEE Computer 29(1), 73–77 (1996)Google Scholar
  17. 17.
    Antoniol, G., Cimitile, A., Lucca, G.A., Penta, M.: Assessing staffing needs for a software maintenance project through queuing simulation. IEEE Trans. Software Eng. 30(1), 43–58 (2004)CrossRefGoogle Scholar
  18. 18.
    Padberg, F.: A study on optimal scheduling for software projects. Softw. Process Improve. Pract. 11, 77–91 (2006)CrossRefGoogle Scholar
  19. 19.
    Kellner, M.I., Madachy, R.J., Raffo, D.M.: Software process simulation modeling: Why? what? how? J. Systems and Software 46(2-3), 113–122 (1999)CrossRefGoogle Scholar
  20. 20.
    Epping, A., Lott, C.M.: Does software design complexity affect maintenance effort? In: Proc. 19th Softw. Eng. Workshop, pp. 297–313 (1994)Google Scholar
  21. 21.
    Bocco, M.G., Moody, D.L., Piattini, M.: Assessing the capability of internal metrics as early indicators of maintenance effort through experimentation. J. Software Maintenance and Evolution 17(3), 225–246 (2005)CrossRefGoogle Scholar
  22. 22.
    Ramanujan, S., Scamell, R.W., Shah, J.R.: An experimental investigation of the impact of individual, program, and organizational characteristics on software maintenance effort. J. Systems and Software 54, 137–157 (2000)CrossRefGoogle Scholar
  23. 23.
    Kan, S.H., Dull, S.D., Amundson, D.N., Lindner, R.J., Hedger, R.J.: As/400 software quality management. IBM Systems Journal 33(1), 62–88 (1994)CrossRefGoogle Scholar
  24. 24.
    Remus, H.: Integrated software validation in the view of inspections / reviews. In: Proc. Symposium on Softw. Validation, pp. 57–64. Elsevier, Amsterdam (1983)Google Scholar
  25. 25.
    Musa, J.D.: Software Reliability Engineering. Osborne/McGraw-Hill, New York (1998)Google Scholar
  26. 26.
    SEL: Sel (software engineering laboratory) data (1997), http://www.cebase.org
  27. 27.
    Defamie, M., Jacobs, P., Thollembeck, J.: Software reliability: assumptions, realities and data. In: Proc. 1999 Intl. Conf. Softw. Maintenance (ICSM’99), pp. 337–345 (1999)Google Scholar
  28. 28.
    Sargent, R.G.: Validation and verification of simulation models. In: Proc. 31st Conf. Winter Simulation, pp. 39–48 (1999)Google Scholar
  29. 29.
    Cohen, S.: Predicting when product line investment pays. Technical Report Techinical Report CMU/SEI-2003-TN-017, Software Engineering Institute, Carnegie Mellon University (2003)Google Scholar
  30. 30.
    Böckle, G., Clements, P., McGregor, J.D., Muthig, D., Schmid, K.: Calculating roi for software product lines. IEEE Software 21(3), 32–38 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Makoto Nonaka
    • 1
  • Liming Zhu
    • 2
  • Muhammad Ali Babar
    • 3
  • Mark Staples
    • 2
  1. 1.Faculty of Business Administration, Toyo UniversityJapan
  2. 2.National ICTAustralia
  3. 3.Lero, University of LimerickIreland

Personalised recommendations