Process Mining Framework for Software Processes

  • Vladimir Rubin
  • Christian W. Günther
  • Wil M. P. van der Aalst
  • Ekkart Kindler
  • Boudewijn F. van Dongen
  • Wilhelm Schäfer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4470)


Software development processes are often not explicitly modelled and sometimes even chaotic. In order to keep track of the involved documents and files, engineers use Software Configuration Management (SCM) systems. Along the way, those systems collect and store information on the software process itself. Thus, SCM information can be used for constructing explicit process models, which is called software process mining. In this paper we show that (1) a Process Mining Framework can be used for obtaining software process models as well as for analysing and optimising them; (2) an algorithmic approach, which arose from our research on software processes, is integrated in the framework.


Software Process Mining and Management 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van Dongen, B., et al.: The ProM framework: A New Era in Process Mining Tool Support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    MSR 2005 International Workshop on Mining Software Repositories. In: ICSE ’05: Proceedings of the 27th international conference on Software engineering, ACM Press, New York (2005)Google Scholar
  3. 3.
    Sandusky, R.J., Gasser, L., Ripoche, G.: Bug Report Networks: Varieties, Strategies, and Impacts in a F/OSS Development Community. In: MSR 2004: International Workshop on Mining Software Repositories (2004),
  4. 4.
    Iannacci, F.: Coordination Processes in Open Source Software Development: The Linux Case Study (Apr. 2005),
  5. 5.
    Agrawal, R., Srikant, R.: Mining sequential patterns. In: Yu, P.S., Chen, A.S.P. (eds.) Eleventh International Conference on Data Engineering, Taipei, Taiwan, pp. 3–14. IEEE Computer Society Press, Los Alamitos (1995), CrossRefGoogle Scholar
  6. 6.
    van der Aalst, W., et al.: Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering 47(2), 237–267 (2003)CrossRefGoogle Scholar
  7. 7.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs. In: Schek, H.-J., et al. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based Data. ACM Transactions on Software Engineering and Methodology 7(3), 215–249 (1998)CrossRefGoogle Scholar
  9. 9.
    Cook, J.E., et al.: Discovering models of behavior for concurrent workflows. Computers in Industry 53(3), 297–319 (2004)CrossRefGoogle Scholar
  10. 10.
    Kindler, E., Rubin, V., Schäfer, W.: Incremental Workflow mining based on Document Versioning Information. In: Li, M., Boehm, B., Osterweil, L.J. (eds.) SPW 2005. LNCS, vol. 3840, pp. 287–301. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Kindler, E., Rubin, V., Schäfer, W.: Activity mining for discovering software process models. In: Biel, B., Book, M., Gruhn, V. (eds.) Proc. of the Software Engineering 2006 Conference, Leipzig, Germany, March 2006. LNI, vol. P-79, pp. 175–180. Gesellschaft für Informatik (2006)Google Scholar
  12. 12.
    van der Aalst, W., et al.: Process Mining: A Two-Step Approach using Transition Systems and Regions. BPM Center Report BPM-06-30, BPM Center, (Dec. 2006)Google Scholar
  13. 13.
    Cortadella, J., et al.: Deriving Petri nets from finite transition systems. IEEE Transactions on Computers 47(8), 859–882 (1998), CrossRefMathSciNetGoogle Scholar
  14. 14.
    Kindler, E., Rubin, V.: Process Mining and Petri Net Synthesis. In: Eder, J., Dustdar, S. (eds.) Business Process Management Workshops. LNCS, vol. 4103, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Cortadella, J., et al.: Petrify: a tool for manipulating concurrent specifications and synthesis of asynchronous controllers. IEICE Transactions on Information and Systems E80-D(3), 315–325 (1997), Google Scholar
  16. 16.
    van der Aalst, W., Weijters, A., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  17. 17.
    van Dongen, B., van der Aalst, W.: Multi-Phase Process Mining: Building Instance Graphs. In: Atzeni, P., et al. (eds.) ER 2004. LNCS, vol. 3288, pp. 362–376. Springer, Heidelberg (2004)Google Scholar
  18. 18.
    Weijters, A., van der Aalst, W.: Rediscovering Workflow Models from Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering 10(2), 151–162 (2003)Google Scholar
  19. 19.
    van der Aalst, W., Medeiros, A., Weijters, A.: Genetic Process Mining. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 48–69. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    van der Aalst, W., Reijers, H., Song, M.: Discovering Social Networks from Event Logs. Computer Supported Cooperative work 14(6), 549–593 (2005)CrossRefGoogle Scholar
  21. 21.
    Günther, C., van der Aalst, W.: Mining Activity Clusters from Low-level Event Logs. BETA Working Paper Series, WP 165, Eindhoven University of Technology, Eindhoven (2006)Google Scholar
  22. 22.
    Rozinat, A., van der Aalst, W.: Conformance Testing: Measuring the Fit and Appropriateness of Event Logs and Process Models. In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 163–176. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    van der Aalst, W., Beer, H., Dongen, B.: Process Mining and Verification of Properties: An Approach based on Temporal Logic. BETA Working Paper Series, WP 136, Eindhoven University of Technology, Eindhoven (2005)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Vladimir Rubin
    • 1
    • 2
  • Christian W. Günther
    • 1
  • Wil M. P. van der Aalst
    • 1
  • Ekkart Kindler
    • 2
  • Boudewijn F. van Dongen
    • 1
  • Wilhelm Schäfer
    • 2
  1. 1.Eindhoven University of Technology, EindhovenThe Netherlands
  2. 2.University of Paderborn, PaderbornGermany

Personalised recommendations