The Ecology of Browsing and Grazing pp 47-88

Part of the Ecological Studies book series (ECOLSTUD, volume 195)

The Morphophysiological Adaptations of Browsing and Grazing Mammals

  • Marcus Clauss
  • Thomas Kaiser
  • Jürgen Hummel

The behaviour, physiology and morphology of animals are the outcome of adaptations to particular ecological niches they occupy or once occupied. Studying the correlation between a given set of characteristics of an ecological niche and the morphological and physiological adaptations of organisms to these characteristics is one of the most basic approaches to comparative biology, and has fuelled scientific interest for generations (Gould 2002). However, current scientific standards cannot be met by mere descriptions of both the characteristics of the niche and the organism, and a (hypothetical) intuitive explanation for the adaptive relevance of the latter; the presence or absence of a characteristic must be demonstrated in sound statistical terms (Hagen 2003) ideally supported by experimental data (from in vivo, in vitro, or model assays) on its adaptive relevance.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Archer D, Sanson G (2002) Form and function of the selenodont molar in southern African ruminants in relation to their feeding habits. J Zool 257:13–26.CrossRefGoogle Scholar
  2. Axmacher H, Hofmann RR (1988) Morphological characteristics of the masseter muscle of 22 ruminant species. J Zool 215:463–473.CrossRefGoogle Scholar
  3. Bailoni L, Ramanzin M, Simonetto A, Obalakov N, Schiavon S, Bittan G (1998) The effect of in vitro fermentation on specific gravity and sedimentation measurements of forage particles. J Anim Sci 76:3095–3103.PubMedGoogle Scholar
  4. Baker DL, Hobbs NT (1987) Strategies of digestion: digestive efficiency and retention times of forage diets in montane ungulates. Can J Zool 65:1978–1984.CrossRefGoogle Scholar
  5. Baker G, Jones LHP, Wardrop ID (1959) Cause of wear in sheep’s teeth. Nature 184:1583–1584.PubMedCrossRefGoogle Scholar
  6. Beaumont R, Deswysen AG (1991) Mélange et propulsion du contenu du réticulo-rumen. Reprod Nutr Dev 31:335–359.CrossRefGoogle Scholar
  7. Behrend A, Lechner-Doll M, Streich WJ, Clauss M (2004) Seasonal faecal excretion, gut fill, liquid and particle marker retention in mouflon (Ovis ammon musimon), and a comparison with roe deer (Capreolus capreolus). Acta Theriol 49:503–515.Google Scholar
  8. Bell RHV (1971) A grazing ecosystem in the Serengeti. Sci Am 225:86–93.CrossRefGoogle Scholar
  9. Blair RM, Short HL, Epps EA (1977) Seasonal nutrient yield and digestibility of deer forage from a young pine plantation. J Wildl Manage 41:667–676.CrossRefGoogle Scholar
  10. Bodmer RE (1990) Ungulate frugivores and the browser–grazer continuum. Oikos 57:319–325.CrossRefGoogle Scholar
  11. Boué C (1970) Morphologie fonctionelle des dents labiales chez les ruminants. Mammalia 34:696–711.CrossRefGoogle Scholar
  12. Bryant JP, Reichardt PB, Clausen TP, Provenza FD, Kuropat PJ (1992) Woody plant–mammal interactions. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interaction with secondary plant compounds, vol 2. Academic Press, San Diego, pp 343–370.Google Scholar
  13. Brynard A, Pienaar VdV (1960) Annual report of the biologist, 1958/1959, Koedoe. 3:1–205.Google Scholar
  14. Bunnell FL, Gillingham MP (1985) Foraging behavior: the dynamics of dining out. In: Hudson RJ, White RG (eds) Bioenergetics of wild herbivores. CRC Press, Boca Raton, FL, pp 53–59.Google Scholar
  15. Calder WA (1996) Size, function and life history. Harvard University Press, Cambridge, MA.Google Scholar
  16. Case TJ (1979) Optimal body size and an animal’s diet. Acta Biotheor 28:54–69.PubMedCrossRefGoogle Scholar
  17. Caswell H, Reed F, Stephenson SN, Werner PA (1973) Photosynthetic pathways and selective herbivory: a hypothesis. Am Nat 107:465–480.CrossRefGoogle Scholar
  18. Cerling TE, Viehl K (2004) Seasonal diet changes of the forest hog (Hylochoerus meinertzhageni) based on the carbon isotopic composition of hair. Afr J Ecol 42:88–92.CrossRefGoogle Scholar
  19. Cerling TE, Harris JM, Leakey MG (1999) Browsing and grazing in elephants: the isotope record of modern and fossil proboscideans. Oecologia 120:364–374.CrossRefGoogle Scholar
  20. Cerling TE, Harris JM, Passey BH (2003) Diets of East African bovidae based on stable isotope analysis. J Mammal 84:456–470.CrossRefGoogle Scholar
  21. Cerling TE, Harris JM, Leakey MG (2005) Environmentally driven dietary adaptations in African mammals. In: Ehleringer JR, Cerling TE, Dearing MD (eds) A history of atmospheric CO2 and its effects on plants, animals and ecosystems. Springer, New York, pp 258–272.CrossRefGoogle Scholar
  22. Clauss M (2003) Tannins in the nutrition of captive wild animals. In: Fidgett A, Clauss M, Ganslosser U, Hatt JM, Nijboer J (eds) Zoo animal nutrition, vol 2. Filander, Fuerth, Germany, pp 53–89.Google Scholar
  23. Clauss M, Lechner-Doll M (2001) Differences in selective reticulo-ruminal particle retention as a key factor in ruminant diversification. Oecologia 129:321–327.Google Scholar
  24. Clauss M, Dierenfeld ES (2007) The nutrition of browsers. In: Fowler ME, Miller RE (eds) Zoo and wild animal medicine, vol VI. Saunders, Philadelphia (in press).Google Scholar
  25. Clauss M, Lechner-Doll M, Behrend A, Lason K, Lang D, Streich WJ (2001) Particle retention in the forestomach of a browsing ruminant, the roe deer (Capreolus capreolus). Acta Theriol 46:103–107.Google Scholar
  26. Clauss M, Lechner-Doll M, Streich WJ (2002) Faecal particle size distribution in captive wild ruminants: an approach to the browser/grazer-dichotomy from the other end. Oecologia 131:343–349.CrossRefGoogle Scholar
  27. Clauss M, Frey R, Kiefer B, Lechner-Doll M, Loehlein W, Polster C, Rössner GE, Streich WJ (2003a) The maximum attainable body size of herbivorous mammals: morphophysiological constraints on foregut, and adaptations of hindgut fermenters. Oecologia 136:14–27.PubMedCrossRefGoogle Scholar
  28. Clauss M, Kienzle E, Hatt JM (2003b) Feeding practice in captive wild ruminants: peculiarities in the nutrition of browsers/concentrate selectors and intermediate feeders. A review. In: Fidgett A, Clauss M, Ganslosser U, Hatt JM, Nijboer J (eds) Zoo animal nutrition, vol 2. Filander, Fuerth, Germany, pp 27–52.Google Scholar
  29. Clauss M, Lechner-Doll M, Streich WJ (2003c) Ruminant diversification as an adaptation to the physicomechanical characteristics of forage. A reevaluation of an old debate and a new hypothesis. Oikos 102:253–262.CrossRefGoogle Scholar
  30. Clauss M, Löhlein W, Kienzle E, Wiesner H (2003d) Studies on feed digestibilities in captive Asian elephants (Elephas maximus). J Anim Physiol Anim Nutr 87:160–173.Google Scholar
  31. Clauss M, Lechner-Doll M, Streich WJ (2004) Differences in the range of faecal dry matter content between feeding types of captive wild ruminants. Acta Theriol 49:259–267.Google Scholar
  32. Clauss M, Froeschle T, Castell J, Hummel J, Hatt JM, Ortmann S, Streich WJ (2005a) Fluid and particle retention times in the black rhinoceros (Diceros bicornis), a large hindgut-fermenting browser. Acta Theriol 50:367–376.Google Scholar
  33. Clauss M, Gehrke J, Hatt JM, Dierenfeld ES, Flach EJ, Hermes R, Castell J, Streich WJ, Fickel J (2005b) Tannin-binding salivary proteins in three captive rhinoceros species. Comp Biochem Physiol A 140:67–72.CrossRefGoogle Scholar
  34. Clauss M, Castell J, Kienzle E, Dierenfeld ES, Flach EJ, Behlert O, Ortmann S, Hatt JM, Streich WJ, Hummel J (2006a) Macromineral absorption in the black rhinoceros (Diceros bicornis) as compared to the domestic horse. J Nutr 136:2017S–2020S.PubMedGoogle Scholar
  35. Clauss M, Castell JC, Kienzle E, Dierenfeld ES, Flach EJ, Behlert O, Ortmann S, Streich WJ, Hummel J, Hatt JM (2006b) Digestion coefficients achieved by the black rhinoceros (Diceros bicornis), a large browsing hindgut fermenter. J Anim Physiol Anim Nutr 90:325–334.CrossRefGoogle Scholar
  36. Clauss M, Hofmann RR, Hummel J, Adamczewski J, Nygren K, Pitra C, Reese S (2006c) The macroscopic anatomy of the omasum of free-ranging moose (Alces alces) and muskoxen (Ovibos moschatus) and a comparison of the omasal laminal surface area in 34 ruminant species. J Zool 270:346–358.CrossRefGoogle Scholar
  37. Clauss M, Hummel J, Streich WJ (2006d) The dissociation of the fluid and particle phase in the forestomach as a physiological characteristic of large grazing ruminants: an evaluation of available, comparable ruminant passage data. Eur J Wildl Res 52:88–98.CrossRefGoogle Scholar
  38. Clauss M, Franz-Odendaal TA, Brasch J, Castell JC, Kaiser TM (2007a) Tooth wear in captive giraffes (Giraffa camelopardalis): mesowear analysis classifies free-ranging specimens as browsers but captive ones as grazers. J Zoo Wildl Med (in press).Google Scholar
  39. Clauss M, Steinmetz H, Eulenberger U, Ossent P, Zingg R, Hummel J, Hatt JM (2007b) Observations on the length of the intestinal tract of African (Loxodonta africana) and Asian elephants (Elephas maximus). Eur J Wildl Res 53:68–72.CrossRefGoogle Scholar
  40. Clauss M, Streich WJ, Schwarm A, Ortmann S, Hummel J (2007c) The relationship of food intake and ingesta passage predicts feeding ecology in two different megaherbivore groups. Oikos 116:209–216.CrossRefGoogle Scholar
  41. Clemens ET, Maloiy GMO (1983) Digestive physiology of East African wild ruminants. Comp Biochem Physiol A 76:319–333.PubMedCrossRefGoogle Scholar
  42. Clemens ET, Maloiy GMO (1984) Colonic absorption and secretion of fluids, electrolytes and organic acids in East African wild ruminants. Comp Biochem Physiol A 77:51–56.PubMedCrossRefGoogle Scholar
  43. Clemens ET, Maloiy GMO, Sutton JD (1983) Molar proportions of volatile fatty acids in the gastrointestinal tract of East African wild ruminants. Comp Biochem Physiol A 76:217–224.PubMedCrossRefGoogle Scholar
  44. Codron J, Lee-Thorp JA, Sponheimer M, Codron D, Grant RC, De Ruiter DJ (2006) Elephant (Loxodonta africana) diets in Kruger National Park, South Africa: spatial and landscape differences. J Mammal 87:27–34.CrossRefGoogle Scholar
  45. Codron D, Lee-Thorp JA, Sponheimer M, Codron J (2007a) Nutritional content of savanna plant foods: implications for browse/grazer models of ungulate diversification. Eur J Wildl Res 53:100–111.CrossRefGoogle Scholar
  46. Codron D, Lee-Thorp JA, Sponheimer M, Codron J, de Ruiter D, Brink JS (2007b) Significance of diet type and diet quality for ecological diversity of African ungulates. J Anim Ecol 76:526–537.PubMedCrossRefGoogle Scholar
  47. Cork SJ, Foley WJ (1991) Digestive and metabolic strategies of arboreal mammalian folivores in relation to chemical defenses in temperate and tropical forests. In: Palo RT, Robbins CT (eds) Plant defenses against mammalian herbivores. CRC Press, Boca Raton, pp 133–166.Google Scholar
  48. DeGusta D, Vrba E (2003) A method for inferring paleohabitats from the functional morphology of bovid astagali. J Archaeol Sci 30:1009–1022.CrossRefGoogle Scholar
  49. DeGusta D, Vrba E (2005a) Methods for inferring paleohabitats from discrete traits of the bovid postcranial skeleton. J Archaeol Sci 32:1115–1123.CrossRefGoogle Scholar
  50. DeGusta D, Vrba E (2005b) Methods for inferring paleohabitats from the functional morphology of bovid phalanges. J Archaeol Sci 32:1099–1113.CrossRefGoogle Scholar
  51. Dehority BA (1995) Rumen ciliates of the pronghorn antelope (Antilocapra americana), mule deer (Odocoileus hemionus), white-tailed deer (Odocoileus virginianus) and elk (Cervus canadensis) in the Northwestern United States. Arch Protistenkd 146:29–36.Google Scholar
  52. Dehority BA, Odenyo AA (2003) Influence of diet on the rumen protozoal fauna of indigenous African wild ruminants. J Eukaryot Microbiol 50:220–223.PubMedCrossRefGoogle Scholar
  53. Dehority BA, Demarais S, Osborn DA (1999) Rumen ciliates of white-tailed deer (Odocoileus virginianus), axis deer (Axis axis), sika deer (Cervus nippon) and fallow deer (Dama dama) from Texas. J Eukaryot Microbiol 46:125–131.PubMedCrossRefGoogle Scholar
  54. Demment MW, Van Soest PJ (1985) A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am Nat 125:641–672.CrossRefGoogle Scholar
  55. Demment MW, Longhurst WH (1987) Browsers and grazers: constraints on feeding ecology imposed by gut morphology and body size. Proceedings of the IVth International Conference on Goats, Brazilia, Brazil, 989–1004.Google Scholar
  56. Deutsch A, Lechner-Doll M, Wolf AG (1998) Activity of cellulolytic enzymes in the contents of reticulorumen and caecocolon of roe deer (Capreolus capreolus). Comp Biochem Physiol A 119:925–930.CrossRefGoogle Scholar
  57. Ditchkoff SS (2000) A decade since “diversification of ruminants”: has our knowledge improved? Oecologia 125:82–84.CrossRefGoogle Scholar
  58. Dougall HW, Drysdale VM, Glover PE (1964) The chemical composition of Kenya browse and pasture herbage. E Afr Wildl J 2:86–121.Google Scholar
  59. Drescher-Kaden U (1976) Tests on the digestive system of roe deer, fallow deer and mouflon. Report 1: Weight statistics and capacity measurements on the digestive system, particularly of the rumenreticulum. Z Jagdwiss 22:184–190.CrossRefGoogle Scholar
  60. du Plessis I, van der Waal C, Webb EC (2004) A comparison of plant form and browsing height selection of four small stock breeds - preliminary results. S Afr J Anim Sci 34(Suppl. 1):31–34.Google Scholar
  61. Duncan P, Tixier H, Hofmann RR, Lechner-Doll M (1998) Feeding strategies and the physiology of digestion in roe deer. In: Andersen R, Duncan P, Linell JDC (eds) The European roe deer: the biology of success. Scandinavian University Press, Oslo, pp 91–116.Google Scholar
  62. Foose TJ (1982) Trophic strategies of ruminant versus nonruminant ungulates. Dissertation, University of Chicago, Chicago.Google Scholar
  63. Fortelius M (1985) Ungulate cheek teeth: developmental, functional, and evolutionary interrelations. Acta Zool Fenn 180:1–76.Google Scholar
  64. Fortelius M, Kappelman J (1993) The largest land mammal ever imagined. Zool J Linn Soc–Lond 107:85–101.CrossRefGoogle Scholar
  65. Fortelius M, Solounias N (2000) Functional characterization of ungulate molars using the abrasion–attrition wear gradient: a new method for reconstructing paleodiets. Am Mus Novit 3301:1–36.CrossRefGoogle Scholar
  66. Franz-Oftedaal TA, Kaiser TM (2003) Differential mesowear in the maxillary and mandibular cheek dentition of some ruminants (Artiodactyla). Ann Zool Fenn 40:395–410.Google Scholar
  67. Freeland WJ, Janzen DH (1974) Strategies in herbivory by mammals: The role of secondary compounds. Am Nat 108:269–289.CrossRefGoogle Scholar
  68. Freudenberger DO, Wallis IR, Hume ID (1989) Digestive adaptations of kangaroos, wallabies and rat-kangaroos. In: Grigg G, Jarman P, Hume I (eds) Kangaroos, wallabies and rat-kangaroos. Surrey-Beatty, Sydney, pp 151–168.Google Scholar
  69. Gagnon M, Chew AE (2000) Dietary preferences in extant African bovidae. J Mammal 81:490–511.CrossRefGoogle Scholar
  70. Gentry AW (1980) Fossil bovidae (Mammalia) from Langebaanweg. Ann S Afr Mus 79:213–337.Google Scholar
  71. Giesecke D, Van Gylswyk NO (1975) A study of feeding types and certain rumen functions in six species of South African wild ruminants. J Agr Sci 85:75–83.CrossRefGoogle Scholar
  72. Gordon IJ (2003) Browsing and grazing ruminants: Are they different beasts? Forest Ecol Manag 181:13–21.CrossRefGoogle Scholar
  73. Gordon IJ, Illius AW (1988) Incisor arcade structure and diet selection in ruminants. Funct Ecol 2:15–22.CrossRefGoogle Scholar
  74. Gordon IJ, Illius AW (1994) The functional significance of the browser–grazer dichotomy in African ruminants. Oecologia 98:167–175.CrossRefGoogle Scholar
  75. Gordon IJ, Illius AW (1996) The nutritional ecology of African ruminants: a reinterpretation. J Anim Ecol 65:18–28.CrossRefGoogle Scholar
  76. Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, Cambridge, MA.Google Scholar
  77. Greaves W (1991) A relationship between premolar loss and jaw elongation in selenodont artiodactyls. Zool J Linn Soc–Lond 101:121–129.CrossRefGoogle Scholar
  78. Guthrie RD (1990) Frozen fauna of mammoth steppe: the story of blue babe. University of Chicago Press, Chicago.Google Scholar
  79. Hackenberger MK (1987) Diet digestibilities and ingesta transit times of captive Asian and African elephants. University of Guelph, Guelph.Google Scholar
  80. Hagen J (2003) The statistical frame of mind in systematic biology from Quantitative zoology to Biometry. J Hist Biol 36:353–384.PubMedCrossRefGoogle Scholar
  81. Hagerman AE, Robbins CT, Weerasuriya Y, Wilson TC, McArthur C (1992) Tannin chemistry in relation to digestion. J Range Manage 45:57–62.CrossRefGoogle Scholar
  82. Hanley TA (1982) The nutritional basis for food selection by ungulates. J Range Manage 35:146–151.CrossRefGoogle Scholar
  83. Harris JM, Cerling TE (2002) Dietary adaptations of extant and Neogene African suids. J Zool 256:45–54.Google Scholar
  84. Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford.Google Scholar
  85. Haschick SL, Kerley GIH (1996) Experimentally determined foraging heights of buchbuck (Tragelaphus scriptus) and Boer goats (Capra hircus). S Afr J Wildl Res 26:64–65.Google Scholar
  86. Heckathorn SA, McNaughton SJ, Coleman JS (1999) C4 plants and herbivory. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, pp 285–312.CrossRefGoogle Scholar
  87. Hofmann RR (1968) Comparison of the rumen and omasum structure in East African game ruminants in relation to their feeding habits. Sym Zool Soc Lond 21:179–194.Google Scholar
  88. Hofmann RR (1973) The ruminant stomach. East African Literature Bureau, Nairobi.Google Scholar
  89. Hofmann RR (1988) Morphophysiological evolutionary adaptations of the ruminant digestive system. In: Dobson A, Dobson MJ (eds) Aspects of digestive physiology in ruminants. Cornell University Press, Ithaca, NY, pp 1–20.Google Scholar
  90. Hofmann RR (1989) Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78:443–457.CrossRefGoogle Scholar
  91. Hofmann RR (1991) Endangered tropical herbivores - their nutritional requirements and habitat demands. In: Ho YW, Wong HK, Abdullah N, Tajuddin ZA (eds) Recent advances on the nutrition of herbivores. Malaysia Society of Animal Production, UPM Serdang, pp 27–34.Google Scholar
  92. Hofmann RR (1999) Functional and comparative digestive system anatomy of Arctic ungulates. Rangifer 20:71–81.Google Scholar
  93. Hofmann RR, Stewart DRM (1972) Grazer or browser: a classification based on the stomach-structure and feeding habit of East African ruminants. Mammalia 36:226–240.CrossRefGoogle Scholar
  94. Hofmann RR, Streich WJ, Fickel J, Hummel J, Clauss M. Convergent evolution in feeding types: salivary gland mass differences in wild ruminant species. J Morphal (in press).Google Scholar
  95. Holechek JL, Pieper RD, Herbel CH (2004) Range management. Principles and practices, 5th edn. Pearson/Prentice Hall, Upper Saddle River, NJ.Google Scholar
  96. Hoppe PP (1977) Rumen fermentation and body weight in African ruminants. In: Peterle TJ (ed) 13th Congress of Game Biology, vol 13. The Wildlife Society, Washington, DC, pp 141–150.Google Scholar
  97. Hummel J, Clauss M, Zimmermann W, Johanson K, Norgaard C, Pfeffer E (2005) Fluid and article retention in captive okapi (Okapia johnstoni). Comp Biochem Physiol A 140:436–444.CrossRefGoogle Scholar
  98. Hummel J, Südekum KH, Streich WJ, Clauss M (2006) Forage fermentation patterns and their implications for herbivore ingesta retention times. Funct Ecol 20:989–1002.CrossRefGoogle Scholar
  99. Iason G, Palo RT (1991) The effects of birch phenolics on a grazing and a browsing mammal. A comparison of hares. J Chem Ecol 17:1733–1743.CrossRefGoogle Scholar
  100. Iason GR, Van Wieren SE (1999) Digestive and ingestive adaptations of mammalian herbivores to low-quality forage. In: Olff H, Brown VK, Drent RH (eds) Herbivores: between plants and predators. 38th Symp Brit Ecol Soc Blackwell, Oxford, pp 337–369.Google Scholar
  101. Illius AW, Gordon IJ (1992) Modelling the nutritional ecology of ungulate herbivores: evolution of body size and competitive interactions. Oecologia 89:428–434.Google Scholar
  102. Illius AW, Gordon IJ (1999) The physiological ecology of mammalian herbivory. In: Jung HJG, Fahey GC (eds) Nutritional ecology of herbivores. The American Society of Animal Science, Savoy, IL, pp 71–96.Google Scholar
  103. Ioannidis JPA (2005) Why most published research findings are false. PLos Med 2:e124 (696–701).PubMedCrossRefGoogle Scholar
  104. Janis CH (1988) An estimation of tooth volume and hypsodonty indices in ungulate mammals and the correlation of these factors with dietary preference. Teeth revisited. Proceedings of the VIIth International Symposium on Dental Morphology. Mem Mus Hist Naturelle Paris C 53:367–387.Google Scholar
  105. Janis CM (1990) Correlation of cranial and dental variables with dietary preferences in mammals: a comparison of macropodoids and ungulates. Mem Queensland Mus 28:349–366.Google Scholar
  106. Janis CM (1993) Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu Rev Ecol Syst 24:467–500.CrossRefGoogle Scholar
  107. Janis CM (1995) Correlations between craniodental morphology and feeding behavior in ungulates: reciprocal illumination between living and fossil taxa. In: Thomason JJ (ed) Functional morphology in vertebrate paleontology. Cambridge Univ. Press, New York, pp 76–98.Google Scholar
  108. Janis CM, Scott KM (1987) The interrelationships of higher ruminant families with special emphasis on the members of the cervoidea. Am Mus Novit 2893:1–85.Google Scholar
  109. Janis CM, Ehrhardt D (1988) Correlation of the relative muzzle width and relative incisor width with dietary preferences in ungulates. Zool J Linn Soc–Lond 92:267–284.CrossRefGoogle Scholar
  110. Janis CM, Fortelius M (1988) The means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biol Rev 63:197–230.PubMedCrossRefGoogle Scholar
  111. Janis CM, Constable E (1993) Can ungulate craniodental features determine digestive physiology? J Vertebr Paleontol 13:abstract.Google Scholar
  112. Jarman PJ (1974) The social organization of antelope in relation to their ecology. Behaviour 48:215–266.CrossRefGoogle Scholar
  113. Jiang Z, Takatsuki S (1999) Constraints on feeding type in ruminants: a case for morphology over phylogeny. Mammal Study 24:79–89.CrossRefGoogle Scholar
  114. Johnson CN, Prideaux GJ (2004) Extinctions of herbivorous mammals in the late Pleistocene of Australia in relation to their feeding ecology: no evidence for environmental change as cause of extinction. Austr Ecol 29:553–557.CrossRefGoogle Scholar
  115. Jones RJ, Meyer JHF, Bechaz FM, Stolzt MA, Palmer B, van der Merwe G (2001) Comparison of rumen fluid from South African game species and from sheep to digest tanniniferous browse. Aust J Agr Res 52:453–460.CrossRefGoogle Scholar
  116. Kaiser TM, Fortelius M (2003) Differential mesowear in occluding upper and lower molars: opening mesowear analysis for lower molars and premolars in hypsodont horses. J Morphol 258:67–83.PubMedCrossRefGoogle Scholar
  117. Kappelman J (1988) Morphology and locomotor adaptations of the bovid femur in relation to habitat. J Morphol 198:119–130.PubMedCrossRefGoogle Scholar
  118. Kappelmann J, Plummer T, Bishop L, Duncan A, Appleton S (1997) Bovids as indicators of plio-pleistocene paleoenvironments in East Africa. J Hum Evol 32:229–256.CrossRefGoogle Scholar
  119. Kaske M, Midasch A (1997) Effects of experimentally impaired reticular contractions on digesta passage in sheep. Brit J Nutr 78:97–110.PubMedCrossRefGoogle Scholar
  120. Kay RF, Madden RH (1997) Mammals and rainfall: paleoecology of the middle Miocene at La Venta (Columbia, South America). J Hum Evol 32:161–199.PubMedCrossRefGoogle Scholar
  121. Kay RNB (1987a) Comparative studies of food propulsion in ruminants. In: Ooms LAA, Degtyse AD, Van Miert ASJ (eds) Physiological and pharmacological aspects of the reticulo-rumen. Marinus Nijhoff, Boston, pp 155–170.Google Scholar
  122. Kay RNB (1987b) Weights of salivary glands in some ruminant animals. J Zool 211:431–436.CrossRefGoogle Scholar
  123. Kay RNB (1993) Digestion in ruminants at pasture. World Conference on Animal Production Edmonton, Canada, pp 461–474.Google Scholar
  124. Kay RNB, Engelhardt Wv, White RG (1980) The digestive physiology of wild ruminants. In: Ruckebush Y, Thivend P (eds) Digestive physiology and metabolism in ruminants. MTP Press, Lancaster, pp 743–761.Google Scholar
  125. Kock RA, Garnier J (1993) Veterinary management of three species of rhinoceros in zoological collections. In: Ryder OA (ed) Rhinoceros biology and conservation. Zoological Society of San Diego, San Diego, pp 325–338.Google Scholar
  126. Köhler M (1993) Skeleton and habitat of recent and fossil ruminants. Münchner Geowiss Abh A: Geol Paläontol 25:1–88.Google Scholar
  127. Langer P, Takács A (2004) Why are taeniae, haustra, and semilunar folds differentiated in the gastrointestinal tract of mammals, including man? J Morphol 259:308–315.PubMedCrossRefGoogle Scholar
  128. Lechanteur YARG, Griffiths CL (2003) Diets of common suprabenthic reef fish in False Bay, South Africa. Afr Zool 38:213–227.Google Scholar
  129. Lechner-Doll M, Kaske M, Engelhardt Wv (1991) Factors affecting the mean retention time of particles in the forestomach of ruminants and camelids. Proc Internat Sym Ruminant Physiol 7:455–482.Google Scholar
  130. Lentle RG, Hume ID, Stafford KJ, Kennedy M, Haslett S, Springett BP (2003a) Comparisons of indices of molar progression and dental function of brush-tailed rock-wallabies (Petrogale penicillata) with tammar (Macropus eugenii) and parma (Macropus parma) wallabies. Aust J Zool 51:259–269.CrossRefGoogle Scholar
  131. Lentle RG, Hume ID, Stafford KJ, Kennedy M, Haslett S, Springett BP (2003b) Molar progression and tooth wear in tammar (Macropus eugenii) and parma (Macropus parma) wallabies. Aust J Zool 51:137–151.CrossRefGoogle Scholar
  132. Lentle RG, Hume ID, Stafford KJ, Kennedy M, Springett BP, Haslett S (2003c) Observations on fresh forage intake, ingesta particle size and nutrient digestibility in four species of macropod. Aust J Zool 51:627–636.CrossRefGoogle Scholar
  133. Leus K, MacDonald A (1997) From barbirusa (Babyrousa babyrussa) to domestic pig: the nutrition of swine. Proc Nutr Soc 56:1001–1012.PubMedCrossRefGoogle Scholar
  134. Lirette A, Milligan LP, Cyr N, Elofson RM (1990) Buoyancy separation of particles of forages, feces, and ruminal contents and nuclear magnetic resonance examination. Can J Anim Sci 70:1099–1108.CrossRefGoogle Scholar
  135. Loehlein W, Kienzle E, Wiesner H, Clauss M (2003) Investigations on the use of chromium oxide as an inert, external marker in captive Asian elephants (Elephas maximus): passage and recovery rates. In: Fidgett A, Clauss M, Ganslosser U, Hatt JM, Nijboer J (eds) Zoo animal nutrition, vol 2. Filander, Fuerth, Germany, pp 223–232.Google Scholar
  136. MacFadden BJ (1992) Fossil horses. Cambridge University Press, Cambridge.Google Scholar
  137. MacFadden BJ, Solounias N, Cerling TE (1999) Ancient diets, ecology, and extinction of 5-million-year-old horses from Florida. Science 283:824–827.PubMedCrossRefGoogle Scholar
  138. Maglio V (1973) Origin and evolution of the elephantidae. Trans Am Philos Soc 63:1–149.CrossRefGoogle Scholar
  139. Maloiy GMO, Clemens ET (1991) Aspects of digestion and in vitro fermentation in the caecum of some East African herbivores. J Zool 224:293–300.CrossRefGoogle Scholar
  140. Martins EP, Hansen TF (1996) The statistical analysis of interspecific data: a review and evaluation of phylogenetic comparative methods. In: Martins EP (ed) Phylogenies and the comparative method in animal behavior. Oxford University Press, Oxford, pp 22–75.Google Scholar
  141. Martz FA, Belyea RL (1986) Role of particle size and forage quality in digestion and passage by cattle and sheep. J Dairy Sci 69:1996–2008.PubMedCrossRefGoogle Scholar
  142. McArthur C, Sanson GD (1993) Nutritional effects and costs of a tannin in a grazing and a browsing macropodid marsupial herbivore. Funct Ecol 7:690–969.CrossRefGoogle Scholar
  143. McCammon-Feldman B, van Soest PJ, Horvath P, McDowell RE (1981) Feeding strategy of the goat. Cornell University, Ithaca, NY.Google Scholar
  144. McDowell RE, Sisler DG, Schermerhorn EC, Reed JD, Bauer RP (1983) Game or cattle for meat production on Kenya rangelands? Cornell International Agriculture Monograph, Ithaca, NY.Google Scholar
  145. McNaughton SJ, Tarrants JL, MacNaughton MM, Davis RH (1985) Silica as a defense against herbivory and a growth promotor in African grasses. Ecology 66:528–535.CrossRefGoogle Scholar
  146. Mendoza M, Palmqvist P (2006a) Characterizing adaptive morphological patterns related to diet in bovidae. Acta Zool Sin 52:988–1008.Google Scholar
  147. Mendoza M, Palmqvist P (2006b) Characterizing adaptive morphological patterns related to habitat use and body mass in bovidae. Acta Zool Sin 52:971–987.Google Scholar
  148. Mendoza M, Janis CM, Palmqvist P (2002) Characterizing complex craniodental patterns related to feeding behaviour in ungulates: a multivariate approach. J Zool 258:223–246.CrossRefGoogle Scholar
  149. Milton K, Dintzis FR (1981) Nitrogen-to-protein conversion factors for tropical plant samples. Biotropica 13:177–181.CrossRefGoogle Scholar
  150. Moseley G, Jones JR (1984) The physical digestion of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) in the foregut of sheep. Brit J Nutr 52:381–390.PubMedCrossRefGoogle Scholar
  151. Mtengeti EJ, Wilman D, Moseley G (1995) Physical structure of white clover, rape, spurrey and perennial ryegrass in relation to rate of intake by sheep, chewing activity and particle breakdown. J Agr Sci 125:43–50.CrossRefGoogle Scholar
  152. Neuville H, Derscheid JM (1929) Recherches anatomiques sur l’okapi. IV. L’estomac. Rev Zool Afr 16:373–419.Google Scholar
  153. Nocek JE, Kohn RA (1987) Initial particle form and size on change in functional specific gravity of alfalfa and timothy hay. J Dairy Sci 70:1850–1863.CrossRefGoogle Scholar
  154. Oftedal O (1991) The nutritional consequences of foraging in primates: the relationship of nutrient intakes to nutrient requirements. Philos Trans R Soc B 334:161–170.CrossRefGoogle Scholar
  155. Oldemeyer JL, Franzmann AW, Brundage AL, Arneson PD, Flynn A (1977) Browse quality and the Kenai moose population. J Wildlife Manage 41:533–542.CrossRefGoogle Scholar
  156. Owen-Smith N (1982) Factors influencing the consumption of plant products by large herbivores. In: Huntley BJ, Walker BH (eds) Ecology of tropical savannas. Springer, Berlin Heidelberg New York, pp 359–404.Google Scholar
  157. Owen-Smith N (1985) Niche separation among African ungulates. In: Vrba ES (ed) Species and Speciation, vol 4. Transvaal Museum, Pretoria, pp 167–171.Google Scholar
  158. Owen-Smith N (1988) Megaherbivores - the influence of very large body size on ecology. Cambridge University Press, Cambridge.Google Scholar
  159. Owen-Smith N (1997) Distinctive features of the nutritional ecology of browsing versus grazing ruminants. Z Säugetierkd 62 (Suppl. 2):176–191.Google Scholar
  160. Palamara J, Phakey PP, Rachinger WA, Sanson GD, Orams HJ (1984) On the nature of the opaque and translucent enamel regions of some macropodinae (Macropus giganteus, Wallabia bicolor and Peradorcas concinna). Cell Tissue Res 238:329–337.PubMedCrossRefGoogle Scholar
  161. Palmqvist P, Groecke DR, Arribas A, Farina RA (2003) Paleoecological reconstruction of a lower Pleistocene large mammal community using biogeochemical and ecomorphological approaches. Paleobiology 29:205–229.CrossRefGoogle Scholar
  162. Pérez-Barbería FJ, Gordon IJ (1999) The functional relationship between feeding type and jaw and cranial morphology in ungulates. Oecologia 118:157–165.CrossRefGoogle Scholar
  163. Pérez-Barbería FJ, Gordon IJ (2001) Relationships between oral morphology and feeding style in the Ungulata: a phylogenetically controlled evaluation. Proc R Soc Lond B Bio 268:1023–1032.CrossRefGoogle Scholar
  164. Pérez-Barbería FJ, Gordon IJ (2005) Gregariousness increases brain size in ungulates. Oecologia 145:41–52.PubMedCrossRefGoogle Scholar
  165. Pérez-Barbería FJ, Gordon IJ, Illius A (2001a) Phylogenetic analysis of stomach adaptation in digestive strategies in African ruminants. Oecologia 129:498–508.Google Scholar
  166. Pérez-Barbería FJ, Gordon IJ, Nores C (2001b) Evolutionary transitions among feeding styles and habitats in ungulates. Evol Ecol Res 3:221–230.Google Scholar
  167. Pérez-Barbería FJ, Elston DA, Gordon IJ, Illius AW (2004) The evolution of phylogenetic differences in the efficiency of digestion in ruminants. Proc Roy Soc Lond B Bio 271:1081–1090.CrossRefGoogle Scholar
  168. Peters RH (1986) The ecological implications of body size. Cambridge University Press, Cambridge.Google Scholar
  169. Plummer TW, Bishop LC (1994) Hominid paleoecology at Olduvai Gorge, Tanzania as indicated by antelope remains. J Hum Evol 27:47–75.CrossRefGoogle Scholar
  170. Popowics TE, Fortelius M (1997) On the cutting edge: tooth blade sharpness in herbivorous and faunivorous mammals. Ann Zool Fenn 34:73–88.Google Scholar
  171. Prins RA, Geelen MJH (1971) Rumen characteristics of red deer, fallow deer and roe deer. J Wildlife Manage 35:673–680.CrossRefGoogle Scholar
  172. Prins RA, Kreulen DA (1991) Comparative aspects of plant cell wall digestion in mammals. In: Hoshino S, Onodera R, Minoto H, Itabashi H (eds) The rumen ecosystem. Japan Scientific Society Press, Tokyo, pp 109–120.Google Scholar
  173. Prins RA, Rooymans TP, Veldhuizen M, Domhof MA, Cliné-Theil W (1983) Extent of plant cell wall digestion in several species of wild ruminants kept in the zoo. Zool Garten NF 53:393–403.Google Scholar
  174. Prins RA, Lankhorst A, Van Hoven W (1984) Gastro-intestinal fermentation in herbivores and the extent of plant cell wall digestion. In: Gilchrist FMC, Mackie RI (eds) Herbivore nutrition in the subtropics and tropics. Science Press, Craighall, South Africa, pp 408–434.Google Scholar
  175. Rhoades DF, Gates RG (1976) Towards a general theory of plant antiherbivore chemistry. Recent Adv Phytochem 10:168–213.Google Scholar
  176. Robbins C, Hagerman A, Austin P, McArthur C, Hanley T (1991) Variation in mammalian physiological responses to a condensed tannin and its ecological implications. J Mammal 72:480–486.CrossRefGoogle Scholar
  177. Robbins CT (1993) Wildlife feeding and nutrition. Academic Press, San Diego.Google Scholar
  178. Robbins CT, Spalinger DE, Van Hoven W (1995) Adaptations of ruminants to browse and grass diets: are anatomical-based browser–grazer interpretations valid? Oecologia 103:208–213.CrossRefGoogle Scholar
  179. Sanson GD (1989) Morphological adaptations of teeth to diets and feeding in the macropodoidea. In: Grigg G, Jarman P, Hume I (eds) Kangaroos, wallabies and rat-kangaroos. Surrey-Beatty, Sydney, pp 151–168.Google Scholar
  180. Sanson GD (2006) The biomechanics of browsing and grazing. Am J Bot 93:1531–1545.CrossRefGoogle Scholar
  181. Sanson GD, Kerr SA, Gross KA (2007) Do silica phytoliths really wear mammalian teeth? J Archaeol Sci 34:526–531.CrossRefGoogle Scholar
  182. Schmidt-Nielsen K (1984) Scaling: Why is animal size so important? Cambridge University Press, Cambridge.Google Scholar
  183. Scott KM (1985) Allometric trends and locomotor adaptations in the Bovidae. Bull Am Mus Nat Hist 179:197–288.Google Scholar
  184. Scott KM (1987) Allometry and habitat-related adaptations in the postcranial skeleton of cervidae. In: Wemmer CM (ed) Biology and management of the cervidae. Smithsonian Press, Washington, DC, pp 65–79.Google Scholar
  185. Short HL (1975) Nutrition of southern deer in different seasons. J Wildlife Manage 39:321–329.CrossRefGoogle Scholar
  186. Short HL, Blair RM, Segelquist CA (1974) Fiber composition and forage digestibility by small ruminants. J Wildl Manage 38:197–209.CrossRefGoogle Scholar
  187. Sibly RM (1981) Strategies of digestion and defecation. In: Townsend C, Calow P (eds) Physiological ecology: an evolutionary approach to resource utilization. Blackwell, Oxford, pp 109–139.Google Scholar
  188. Siepel H, de Ruiter-Dijkman EM (1993) Feeding guilds of oribatid mites based on their carbohydrase activities. Soil Biol Biochem 25:1491–1497.CrossRefGoogle Scholar
  189. Simpson GG (1953) The major features of evolution. Columbia University Press, New York.Google Scholar
  190. Solounias N, Dawson-Saunders B (1988) Dietary adaptations and palaecology of the late Miocene ruminants from Pikermi and Samos in Greece. Palaeogeogr Palaeoecl 65:149–172.CrossRefGoogle Scholar
  191. Solounias N, Moelleken S (1993) Dietary adaptations of some extinct ruminants determined by premaxillary shape. J Mammal 74:1059–1071.CrossRefGoogle Scholar
  192. Solounias N, Moelleken SMC (1999) Dietary determination of extinct bovids through cranial foraminal analysis, with radiographic applications. Ann Mus Goulandris 10:267–290.Google Scholar
  193. Solounias N, Semprebon G (2002) Advances in the reconstruction of ungulate ecomporphology with application to early fossil equids. Am Mus Novit 3366:1–49.CrossRefGoogle Scholar
  194. Solounias N, Teaford M, Walker A (1988) Interpreting the diet of extinct ruminants: the case of a non-browsing giraffid. Paleobiology 14:287–300.Google Scholar
  195. Solounias N, Fortelius M, Freeman P (1994) Molar wear rates in ruminants: a new approach. Ann Zool Fenn 31:219–227.Google Scholar
  196. Solounias N, Moelleken S, Plavcan J (1995) Predicting the diet of extinct bovids using masseteric morphology. J Vertebr Paleontol 15:795–805.Google Scholar
  197. Spalinger DE, Robbins CT, Hanley TA (1986) The assessment of handling time in ruminants: the effect of plant chemical and physical structure on the rate of breakdown of plant particles in the rumen of mule deer and elk. Can J Zool 64:312–321.CrossRefGoogle Scholar
  198. Spencer LM (1995) Morphological correlates of dietary resource partitioning in the African bovidae. J Mammal 76:448–471.CrossRefGoogle Scholar
  199. Sponheimer M, Reed KE, Lee-Thorp JA (1999) Combining isotopic and ecomorphological data to refine bovid paleodietary reconstruction: a case study from the Makapansgat Limeworks hominin locality. J Hum Evol 36:705–718.PubMedCrossRefGoogle Scholar
  200. Sponheimer M, Lee-Thorp JA, DeRuiter D, Smith JM, Van der Merwe NJ, Reed K, Grant CC, Ayliffe LK, Robinson TF, Heidelberger C, Marcus W (2003) Diets of Southern African bovidae: stable isotope evidence. J Mammal 84:471–479.CrossRefGoogle Scholar
  201. Sprent JA, McArthur C (2002) Diet and diet selection of two species in the macropodid browser–grazer continuum: do they eat what they ‘should’? Aust J Zool 50:183–192.CrossRefGoogle Scholar
  202. Stöckmann W (1979) Differences in the shape of the mandibles of African bovidae in relation to food composition. Zool Jahrb Syst 106:344–373.Google Scholar
  203. Thenius E (1992) The okapi from Zaire - a “living fossil” or a secondary rainforest inhabitant? Z Zool Syst Evol 30:163–179.Google Scholar
  204. Troelsen JE, Campbell JB (1968) Voluntary consumption of forage by sheep and its relation to the size and shape of particles in the digestive tract. Anim Prod 10:289–296.Google Scholar
  205. Turnbull WD (1970) Mammalian masticatory apparatus. Fieldiana Geol 18:147–356.Google Scholar
  206. Van Hoven W (1991) Mortalities in kudu populations related to chemical defence in trees. J Afr Zool 105:141–145.Google Scholar
  207. Van Soest PJ (1975) Physico-chemical aspects of fiber digestion. In: McDonald IW, Warner ACI (eds) Digestion and metabolism of the ruminant. University of New England Publishing, Armidale, NSW, pp 352–365.Google Scholar
  208. Van Soest PJ (1994) Nutritional ecology of the ruminant, 2nd edn. Cornell Univ Press, Ithaca, New York.Google Scholar
  209. Van Soest PJ (1996) Allometry and ecology of feeding behavior and digestive capacity in herbivores: a review. Zoo Biol 15:455–479.CrossRefGoogle Scholar
  210. Van Wieren SE (1996a) Nutrient extraction from mixed grass-browse diets by goats and sheep. In: Van Wieren SE (ed) Digestive strategies in ruminants and nonruminants. Thesis University of Wageningen, pp 67–79.Google Scholar
  211. Van Wieren SE (1996b) Browsers and grazers: foraging strategies in ruminants. In: Van Wieren SE (ed) Digestive strategies in ruminants and nonruminants. Thesis University of Wageningen, pp 119–146.Google Scholar
  212. Vrba ES (1978) The significance of bovid remains as indicators of environment and predation patterns. University of Chicago Press, Chicago.Google Scholar
  213. Waldo DR, Smith LW, Cox EL (1972) Model of cellulose disappearance from the rumen. J Dairy Sci 55:125–129.PubMedCrossRefGoogle Scholar
  214. Walker A, Hoeck HN, Perez L (1978) Microwear of mammalian teeth as indicators of diet. Science 201:908–910.PubMedCrossRefGoogle Scholar
  215. Warner RG, Flatt WP, Loosli JK (1956) Dietary factors influencing the development of the ruminant stomach. Agr Food Chem 4:788–792.CrossRefGoogle Scholar
  216. Wattiaux MA, Satter LD, Mertens DR (1992) Effect of microbial fermentation on functional specific gravity of small forage particles. J Anim Sci 70:1262–1270.PubMedGoogle Scholar
  217. Westoby M, Leishman MR, Lord JM (1995) On misinterpreting the “phylogenetic correction”. J Ecol 83:531–534.CrossRefGoogle Scholar
  218. Williams SH, Kay RF (2001) A comparative test of adaptive explanations for hypsodonty in ungulates and rodents. J Mammal Evol 8:207–229.CrossRefGoogle Scholar
  219. Williams J, Ostrowski S, Bedin E, Ismail K (2001) Seasonal variation in energy expenditure, water flux and food consumption of Arabian oryx (Oryx leucoryx). J Exp Biol 204:2301–2311.PubMedGoogle Scholar
  220. Wilman D, Riley JA (1993) Potential nutritive value of a wide range of grassland species. J Agr Sci 120:43–49.CrossRefGoogle Scholar
  221. Wilson JR (1993) Organization of forage plant tissues. In: Jung HG, Buxton DR, Hatfield RD, Ralph J (eds) Forage cell wall structure and digestibility. American Society of Agronomy, Madison, pp 1–32.Google Scholar
  222. Wilson JR, McLeod NM, Minson DJ (1989) Particle-size reduction of the leaves of a tropical and a temperate grass by cattle. I. Effect of chewing during eating and varying times of digestion. Grass Forage Sci 44:55–63.CrossRefGoogle Scholar
  223. Witzel U, Preuschoft H (1999) The bony roof of the nose in humans and other primates. Zool Anz 238:103–115.Google Scholar
  224. Witzel U, Preuschoft H (2002) The functional shape of the human skull, as documented by three-dimensional FEM studies. Anthropol Anz 60:113–135.PubMedGoogle Scholar
  225. Witzel U, Preuschoft H (2005) Finite-element model construction for the virtual synthesis of the skulls in vertebrates: case study of Diplodocus. Anat Rec Part A 283:391–401.Google Scholar
  226. Wofford H, Holechek JL (1982) Influence of grind size on four- and forty-eight hour in vitro digestibility. Proc W Sect Am Soc Anim Sci 33:261–263.Google Scholar
  227. Woodall PF (1992) An evaluation of a rapid method for estimating digestibility. Afr J Ecol 30:181–185.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Marcus Clauss
    • 1
  • Thomas Kaiser
    • 2
  • Jürgen Hummel
    • 3
  1. 1.Division of Zoo Animals, Exotic Pets and Wildlife, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
  2. 2.Biozentrum Grindel and Zoological MuseumUniversity of HamburgHamburgGermany
  3. 3.Institute of Animal Science, Department of Animal NutritionUniversity of BonnBonnGermany

Personalised recommendations