Advertisement

Abstract

An instance I of the Hospitals / Residents problem (HR) involves a set of residents (graduating medical students) and a set of hospitals, where each hospital has a given capacity. The residents have preferences for the hospitals, as do hospitals for residents. A solution of I is a stable matching, which is an assignment of residents to hospitals that respects the capacity conditions and preference lists in a precise way. In this paper we present constraint encodings for HR that give rise to important structural properties. We also present a computational study using both randomly-generated and real-world instances. We provide additional motivation for our models by indicating how side constraints can be added easily in order to solve hard variants of HR.

Keywords

Constraint Programming Constraint Satisfaction Problem Stable Match Preference List Stable Marriage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aldershof, B., Carducci, O.M., Lorenc, D.C.: Refined inequalities for stable marriage. Constraints 4, 281–292 (1999)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bessière, C., Régin, J.-C.: Arc consistency for general constraint networks: Preliminary results. In: Proceedings of IJCAI ’97, vol. 1, pp. 398–404 (1997)Google Scholar
  3. 3.
    Brito, I., Meseguer, P.: Distributed stable matching problems. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 152–166. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Brito, I., Meseguer, P.: Distributed stable matching problems with ties and incomplete lists. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 675–679. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Canadian Resident Matching Service. How the matching algorithm works. Web document available at http://www.carms.ca/matching/algorith.htm
  6. 6.
    Dias, V.M.F., da Fonseca, G.D., de Figueiredo, C.M.H., Szwarcfiter, J.L.: The stable marriage problem with restricted pairs. Theoretical Computer Science 306(1-3), 391–405 (2003)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American Mathematical Monthly 69, 9–15 (1962)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gent, I.P., Irving, R.W., Manlove, D.F., Prosser, P., Smith, B.M.: A constraint programming approach to the stable marriage problem. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 225–239. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Gent, I.P., Prosser, P.: An empirical study of the stable marriage problem with ties and incomplete lists. In: Proceedings of ECAI ’02, pp. 141–145. IOS Press, Amsterdam (2002)Google Scholar
  10. 10.
    Gent, I.P., Prosser, P.: SAT encodings of the stable marriage problem with ties and incomplete lists. In: Proceedings of SAT ’02, pp. 133–140 (2002)Google Scholar
  11. 11.
    Green, M.J., Cohen, D.A.: Tractability by approximating constraint languages. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 392–406. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algorithms. MIT Press, Cambridge (1989)MATHGoogle Scholar
  13. 13.
    Irving, R.W.: Matching medical students to pairs of hospitals: a new variation on a well-known theme. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 381–392. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Irving, R.W.: The Man-Exchange Stable Marriage Problem. Technical Report TR-2004-177, University of Glasgow, Department of Computing Science (2004)Google Scholar
  15. 15.
    Knuth, D.E.: Mariages Stables. Les Presses de L’Université de Montréal, Montréal (1976)MATHGoogle Scholar
  16. 16.
    Lustig, I.J., Puget, J.: Program does not equal program: constraint programming and its relationship to mathematical programming. Interfaces 31, 29–53 (2001)Google Scholar
  17. 17.
    Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8, 99–118 (1977)MATHCrossRefGoogle Scholar
  18. 18.
    Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants of stable marriage. Theoretical Computer Science 276(1-2), 261–279 (2002)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Manlove, D.F., O’Malley, G.: Modelling and solving the stable marriage problem using constraint programming. In: Proceedings of the Fifth Workshop on Modelling and Solving Problems with Constraints, held at IJCAI ’05, pp. 10–17 (2005)Google Scholar
  20. 20.
    Manlove, D.F., O’Malley, G., Prosser, P., Unsworth, C.: A Constraint Programming Approach to the Hospitals / Residents Problem. Technical Report TR-2007-236, University of Glasgow, Department of Computing Science (2007)Google Scholar
  21. 21.
    McDermid, E., Cheng, C., Suzuki, I.: Hardness results on the man-exchange stable marriage problem with short preference lists. Information Processing Letters 101, 13–19 (2007)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Ng, C., Hirschberg, D.S.: Lower bounds for the stable marriage problem and its variants. SIAM Journal on Computing 19, 71–77 (1990)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    National Resident Matching Program. About the NRMP. Web document available at http://www.nrmp.org/about_nrmp/how.html
  24. 24.
    Ronn, E.: NP-complete stable matching problems. Journal of Algorithms 11, 285–304 (1990)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Roth, A.E.: The evolution of the labor market for medical interns and residents: a case study in game theory. Journal of Political Economy 92(6), 991–1016 (1984)CrossRefGoogle Scholar
  26. 26.
    Roth, A.E., Sotomayor, M.A.O.: Two-sided matching: a study in game-theoretic modeling and analysis. Cambridge University Press, Cambridge (1990)MATHGoogle Scholar
  27. 27.
    Silaghi, M.-C., Zanker, M., Barták, R.: Desk-mates (stable matching) with privacy of preferences, and a new distributed CSP framework. In: Proceedings of the CP 2004 workshop on CSP Techniques with Immediate Application (CSPIA), pp. 83–96 (2004)Google Scholar
  28. 28.
    Silaghi, M.-C., Abhyankar, A., Zanker, M., Barták, R.: Desk-mates (stable matching) with privacy of preferences, and a new distributed CSP framework. In: Proceedings of FLAIRS 2005, pp. 671–677. AAAI Press, Menlo Park (2005)Google Scholar
  29. 29.
    Unsworth, C., Prosser, P.: An n-ary constraint for the stable marriage problem. In: Proceedings of the Fifth Workshop on Modelling and Solving Problems with Constraints, held at IJCAI ’05, pp. 32–38 (2005)Google Scholar
  30. 30.
    Unsworth, C., Prosser, P.: A specialised binary constraint for the stable marriage problem. In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS (LNAI), vol. 3607, pp. 218–233. Springer, Heidelberg (2005)Google Scholar
  31. 31.
    van Hentenryck, P., Deville, Y., Teng, C.-M.: A generic arc-consistency algorithm and its specializations. Artificial Intelligence 57, 291–321 (1992)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • David F. Manlove
    • 1
  • Gregg O’Malley
    • 1
  • Patrick Prosser
    • 1
  • Chris Unsworth
    • 1
  1. 1.Department of Computing Science, University of Glasgow, Glasgow G12 8QQUK

Personalised recommendations