A user context approach for adaptive and distributed GIS

  • Mathieu Petit
  • Cyril Ray
  • Christophe Claramunt
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


The research presented in this paper introduces a user context approach for collaborative and adaptive Geographical Information System (GIS). The proposed model is part of a framework based on a multi-dimensional contextual approach that combines user, geographical and device contexts. The spatial properties of the GIS components categorize different configurations as a support for the derivation of user groups. The interfaces and functionalities offered by the adaptive GIS are generalized within each group, and derived from the interface usages. The spatial behaviors that reflect user experiences within a group favor collaborative exchanges. A prototype applied to maritime navigation validates the approach and the algorithms developed.


Adaptive GIS Collaborative filtering Context-awareness Preferences elicitation Profile sharing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Riecken. Introduction: personalized views of personalization. Communication of theACM, 43(8):27–28, 2000.Google Scholar
  2. 2.
    S. Shearin and H. Lieberman. Intelligent profiling by example. In Proceedings of the InternationalConference on Intelligent User Interfaces, pages 145–152. ACM Press, 2001.Google Scholar
  3. 3.
    Y. Yang and C. Claramunt. A hybrid approach for spatial web personalisation. InC. Vangenot and K. Li, editors, Proceedings of the 5th international workshop on Weband Wireless Geographical Information Systems, number 3833 in LNCS, pages 206–221.Springer-Verlag, 2005.Google Scholar
  4. 4.
    D. Oard and J. Kim. Modeling information content using observable behavior. In Proceedingsof the 64 Annual Meeting of the American Society for Information Science andTechnology, pages 38–45, 2001.Google Scholar
  5. 5.
    M. Petit, C. Ray, and C. Claramunt. A contextual approach for the development of GIS:Application to maritime navigation. In J. Carswell and T. Tekuza, editors, Proceedingsof the 6th International Symposium on Web and Wireless Geographical Information Systems,number 4295 in LNCS, pages 158–169. Springer-Verlag, 2006.Google Scholar
  6. 6.
    M. Hampe and V. Paelke. Adaptive maps for mobile applications. In Proceedings ofthe Mobile Maps Workshop at MobileHCI’05, 19 September 2005.
  7. 7.
    S. Burigat and L. Chittaro. Visualizing the results of interactive queries for geographicdata on mobile devices. In Proceedings of the 13th annual ACM international workshopon Geographic Information Systems, pages 277–284. ACM Press, 2005.Google Scholar
  8. 8.
    A. Zipf. Using styled layer descriptor (SLD) for the dynamic generation of user-andcontext-adaptative mobile maps-a technical framework. In K.J. Li and C. Vangenot, editors,Proceedings of the 5th international workshop on Web and Wireless GeograpphicalInformation Systems, number 3833 in LNCS, pages 183–193. Springer-Verlag, 2005.Google Scholar
  9. 9.
    T. Reichenbacher. Adaptive methods for mobile cartography. In Proceedings of the 21stInternational Cartographic Conference, pages 1311–1322, 2003.Google Scholar
  10. 10.
    I. Rauschert,. Agrawal, R. Sharma, S. Fuhrmann, I. Brewer, and A. MacEachren. Designinga human-centered, multimodal gis interface to support emergency management.In Proceedings of the 10th ACM International Symposium on Advances in GeographicInformation Systems, pages 119–124. ACM Press, 2002.Google Scholar
  11. 11.
    A. M. MacEachren and G. Cai. Supporting group work in crisis management: visuallymediated human-GIS-human dialogue. Environment and Planning B: Planning and Design,33(3):435–456, 2006.CrossRefGoogle Scholar
  12. 12.
    B. Brown, M Chalmers, and I. MacColl. Exploring tourism as a collaborativeactivity. Technical report, Equator-02-018, September 2002.
  13. 13.
    M. Petit, C. Ray, and C. Claramunt. An adaptive interaction architecture for collaborativeGIS. Submitted. 2007.Google Scholar
  14. 14.
    G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and J. Vanderdonckt. Aunifying reference framework for multi-target user interfaces. Interacting with Computers, 15(3):289–308, 2003.CrossRefGoogle Scholar
  15. 15.
    P.A. Longley, M.F. Goodchild, D.J. Maguire, and D.W Rhind. Geographical InformationSystems and Sciences. Willey, 2nd edition, 2005.Google Scholar
  16. 16.
    J. Weakliam, M. Bertolotto, and D. Wilson. Implicit interaction profiling for recommendingspatial content. In Proceedings of the 13th annual ACM international workshop onGeographic Information Systems, pages 285–294. ACM Press, 2005.Google Scholar
  17. 17.
    J.S. Breese, D. Heckerman, and C. Kadie. Empirical Analysis of Predictive Algorithmsfor Collaborative Filtering. In Proceedings of the 14th Annual Conference on Uncertaintyin Artificial Intelligence, pages 43–52. Morgan Kaufmann Publishers, 1998.Google Scholar
  18. 18.
    H. Lieberman, N.W. Van Dyke, and A.S. Vivacqua. Let’s browse: a collaborative Webbrowsing agent. In Proceedings of the International Conference on Intelligent User Interfaces:IUI’99, pages 65–68, 1999.Google Scholar
  19. 19.
    P. Langley. User modeling in adaptive interfaces. In Proceedings of the 7th InternationalConference on User Modeling, pages 357–370. Springer-Verlag, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Mathieu Petit
    • 1
  • Cyril Ray
    • 1
  • Christophe Claramunt
    • 1
  1. 1.Naval Academy Research InstituteFrance

Personalised recommendations