CRT RSA Algorithm Protected Against Fault Attacks
Conference paper
- 1.3k Downloads
Abstract
Embedded devices performing RSA signatures are subject to Fault Attacks, particularly when the Chinese Remainder Theorem is used. In most cases, the modular exponentiation and the Garner recombination algorithms are targeted. To thwart Fault Attacks, we propose a new generic method of computing modular exponentiation and we prove its security in a realistic fault model. By construction, our proposal is also protected against Simple Power Analysis. Based on our new resistant exponentiation algorithm, we present two different ways of computing CRT RSA signatures in a secure way. We show that those methods do not increase execution time and can be easily implemented on low-resource devices.
Keywords
RSA Chinese Remainder Theorem Modular Exponentiation Fault Attacks Simple Power Analysis Smart Card Download
to read the full conference paper text
References
- 1.Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking Cryptographic Protocols for Faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)CrossRefGoogle Scholar
- 2.Aumüller, C., et al.: Fault attacks on RSA with CRT: Concrete Results and Practical Countermeasures. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- 3.Blömer, J., Otto, M., Seifert, J.P.: A New RSA-CRT Algorithm Secure Against Bellcore Attacks. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM Conference on Computer and Communications Security – CCS’03, pp. 311–320. ACM Press, New York (2003)Google Scholar
- 4.Ciet, M., Joye, M.: Practical Fault Countermeasures for Chinese Remaindering Based RSA. In: FDTC’05, pp. 124–132 (2005)Google Scholar
- 5.Giraud, C.: Fault Resistant RSA Implementation. In: FDTC’05, pp. 142–151 (2005)Google Scholar
- 6.Shamir, A.: Improved method and apparatus for protecting public key schemes from timing and fault attacks. International Patent Number: WO 98/52319 (1998), Also presented at the rump session of EUROCRYPT’97.Google Scholar
- 7.Yen, S.-M., et al.: RSA Speedup with Residue Number System Immune against Hardware Fault Cryptanalysis. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 397–413. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 8.Wagner, D.: Cryptanalysis of a Provable Secure CRT-RSA Algorithm. In: Pfitzmann, B., Liu, P. (eds.) ACM Conference on Computer and Communications Security – CCS’04, pp. 82–91. ACM Press, New York (2004)Google Scholar
- 9.Otto, M., Blömer, J.: Wagner’s Attack on a Secure CRT-RSA Algorithm Reconsidered. In: Breveglieri, L., et al. (eds.) FDTC 2006. LNCS, vol. 4236, pp. 13–23. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 10.Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Couvreur, C., Quisquater, J.-J.: Fast decipherment algorithm for RSA public-key cryptosystem. Electronics Letters 18(21), 905–907 (1982)CrossRefGoogle Scholar
- 12.Garner, H.: The residue number system. IRE Transactions on Electronic Computers 8(6), 140–147 (1959)CrossRefGoogle Scholar
- 13.Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
- 14.Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)CrossRefGoogle Scholar
- 15.Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Power analysis attacks on modular exponentiation in smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 144–157. Springer, Heidelberg (1999)CrossRefGoogle Scholar
- 16.Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997), Electronic version available at http://www.cacr.math.uwaterloo.ca/hac/ zbMATHGoogle Scholar
- 17.Coron, J.-S.: Resistance Against Differential Power Analysis for Elliptic Curve Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)CrossRefGoogle Scholar
- 18.Joye, M., Lenstra, A.K., Quisquater, J.-J.: Chinese Remaindering Based Cryptosystems in the Presence of Faults. Journal of Cryptology 12(4), 241–246 (1999)CrossRefzbMATHGoogle Scholar
- 19.Yen, S.M., Joye, M.: Checking before output not be enough against fault-based cryptanalysis. IEEE Transactions on Computers 49(9), 967–970 (2000)CrossRefzbMATHGoogle Scholar
- 20.Joye, M., Yen, S.-M.: The Montgomery Powering Ladder. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- 21.Lemke-Rust, K., Paar, C.: An Adversarial Model for Fault Analysis Against Low-Cost Cryptographic Devices. In: Breveglieri, L., et al. (eds.) FDTC 2006. LNCS, vol. 4236, pp. 131–143. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 22.Yen, S.-M., Moon, S.J., Ha, J.-C.: Permanent Fault Attack on RSA with CRT. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 285–296. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- 23.Bar-El, H., et al.: The Sorcerer’s Apprentice Guide to Fault Attacks. In: Breveglieri, L., Koren, I. (eds.) Workshop on Fault Diagnosis and Tolerance in Cryptography – FDTC’04, pp. 330–342. IEEE Computer Society, Los Alamitos (2004)Google Scholar
- 24.Fumaroli, G., Vigilant, D.: Blinded Fault Resistant Exponentiation. In: Breveglieri, L., et al. (eds.) FDTC 2006. LNCS, vol. 4236, pp. 62–70. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 25.Boreale, M.: Attacking Right-to-Left Modular Exponentiation with Timely Random Faults. In: Breveglieri, L., et al. (eds.) FDTC 2006. LNCS, vol. 4236, pp. 24–35. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 26.Fouque, P.-A., Valette, F.: The Doubling Attack: Why Upwards is better than Downwards. In: D.Walter, C., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 269–280. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- 27.Yen, S.-M., et al.: Power Analysis by Exploiting Chosen Message and Internal Collisions – Vulnerability of Checking Mechanism for RSA-Decryption. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 183–195. Springer, Heidelberg (2005)CrossRefGoogle Scholar
- 28.Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R., Sherman, A. (eds.) Advances in Cryptology – CRYPTO ’82, pp. 199–204. Plenum Press, New York (1982)Google Scholar
- 29.Otto, M.: Fault Attacks and Countermeasures. PhD thesis, Universität Paderborn (2004)Google Scholar
Copyright information
© IFIP International Federation for Information Processing 2007