Two Challenges in Genomics That Can Benefit from Petascale Platforms

  • Catherine Putonti
  • Meizhuo Zhang
  • Lennart Johnsson
  • Yuriy Fofanov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4375)


Supercomputing and new sequencing techniques have dramatically increased the number of genomic sequences now publicly available. The rate in which new data is becoming available, however, far exceeds the rate in which one can perform analysis. Examining the wealth of information contained within genomic sequences presents numerous additional computational challenges necessitating high-performance machines. While there are many challenges in genomics that can greatly benefit from the development of more expedient machines, herein we will focus on just two projects which have direct clinical applications.


Human Leukocyte Antigen Preimplantation Genetic Diagnosis Candidate Probe Human Leukocyte Antigen Region International HapMap Consortium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Walgate, R.: Weapons lab to develop Celeras new supercomputer. Genome Biol. (2001)Google Scholar
  2. 2.
    The International HapMap Consortium: A haplotype map of the human genome. Nature 437, 1299–1320 (2005)CrossRefGoogle Scholar
  3. 3.
    Jares, P.: DNA microarray applications in functional genomics. Ultrastruct. Pathol. 30, 209–219 (2006)CrossRefGoogle Scholar
  4. 4.
    Lockhart, D.J., Winzeler, E.A.: Genomics, gene expression and DNA arrays. Nature 405, 827–836 (2000)CrossRefGoogle Scholar
  5. 5.
    Peeters, J.K., Van der Spek, P.J.: Growing applications and advancements in microarray technology and analysis tools. Cell Biochem. Biophys. 43, 149–166 (2005)CrossRefGoogle Scholar
  6. 6.
    Geschwind, D.H.: DNA microarrays: translation of the genome from laboratory to clinic. Lancet Neurol. 2, 275–282 (2003)CrossRefGoogle Scholar
  7. 7.
    Kimball, J.W.: Biology, 6th edn. Wm. C. Brown, Iowa (1994)Google Scholar
  8. 8.
    Robinson, J., Waller, M.J., Parham, P., de Groot, N., Bontrop, R., Kennedy, L.J., Stoehr, P., Marsh, S.G.E.: IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res. 31, 311–314 (2003)CrossRefGoogle Scholar
  9. 9.
    Diepstra, A., Niens, M., Te Meerman, G.J., Poppema, S., van den Berg, A.: Genetic susceptibility to Hodgkins lymphoma associated with the human leukocyte antigen region. Eur. J. Haematol. Suppl. 75, 34–41 (2005)CrossRefGoogle Scholar
  10. 10.
    Saftlas, A.F., Beydoun, H., Triche, E.: Immunogenetic determinants of preeclampsia and related pregnancy disorders: A systematic review. Obstet. Gynecol. 106, 162–167 (2005)CrossRefGoogle Scholar
  11. 11.
    Ahmedov, G., Ahmedova, L., Sedlakova, P., Cinek, O.: Genetic association of type 1 diabetes in an Azerbaijanian population: the HLA-DQ, -DRB1*04, the insulin gene, and CTLA4. Pediatr. Diabetes 7, 88–93 (2006)CrossRefGoogle Scholar
  12. 12.
    Listi, F., Candore, G., Balistreri, C.R., Grimaldi, M.P., Orlando, V., Vasto, S., Colonna-Romano, G., Lio, D., Licastro, F., Franceschi, C., Caruso, C.: Association between the HLA-A2 allele and Alzheimer disease. Rejuvenation Res. 9, 99–101 (2006)CrossRefGoogle Scholar
  13. 13.
    Keet, I.P., Tang, J., Klein, M.R., LeBlanc, S., Enger, C., Rivers, C., Apple, R.J., Mann, D., Goedert, J.J., Miedema, F., Kaslow, R.A.: Consistent associations of HLA class I and II and transporter gene products with progression of human immunodeficiency virus type 1 infection in homosexual men. J. Infect. Dis. 180, 299–309 (1999)CrossRefGoogle Scholar
  14. 14.
    Ovsyannikova, I.G., Vierkant, R.A., Poland, G.A.: Importance of HLA-DQ and HLA-DP polymorphisms in cytokine responses to naturally processed HLA-DR-derived measles virus peptides. Vaccine 24, 5381–5389 (2006)CrossRefGoogle Scholar
  15. 15.
    Ovsyannikova, I.G., Pankratz, V.S., Vierkant, R.A., Jacobson, R.M., Poland, G.A.: Human leukocyte antigen haplotypes in the genetic control of immune response to measles–mumps–rubella vaccine. J. Infect. Dis. 193, 655–663 (2006)CrossRefGoogle Scholar
  16. 16.
    Morishima, Y., Sasazuki, T., Inoko, H., Juji, T., Akaza, T., Yamanoto, K., Ishikawa, Y., Kato, S., Sao, H., Sakamaki, H., Kawa, K., Hamajima, N., Asano, S., Kodera, Y.: The clinical significance of human leukocyte antigen allele compatibility in patients receiving a marrow transplant from serologically HLA-A, HLA-B, and HLA-DR matched unrelated donors. Blood 99, 4200–4206 (2002)CrossRefGoogle Scholar
  17. 17.
    Haddock, S.H., Quartararo, C., Cooley, P., Dao, D.D.: Low-resolution typing of HLA-DQA1 using DNA microarray. Methods Mol. Biol. 170, 201–210 (2001)Google Scholar
  18. 18.
    Consolandi, C., Frosini, A., Pera, C., Ferrara, G.B., Bordoni, R., Castiglioni, B., Rizzi, E., Mezzelani, A., Bernardi, L.R., De Bellis, G., Battaglia, C.: Polymorphism analysis within the HLA-A locus by universal oligonucleotide array. Hum. Mutat. 24, 428–434 (2004)CrossRefGoogle Scholar
  19. 19.
    Palmisano, G.L., Delfino, L., Fiore, M., Longo, A., Ferrara, G.B.: Single nucleotide polymorphisms detection based on DNA microarray technology: HLA as a model. Autoimmun. Rev. 4, 510–514 (2005)CrossRefGoogle Scholar
  20. 20.
    Bang-Ce, Y., Xiaohe, C., Ye, F., Songyang, L., Bincheng, Y., Peng, Z.: Simultaneous genotyping of DRB1/3/4/5 loci by oligonucleotide microarray. J. Mol. Diagn. 7, 592–599 (2005)CrossRefGoogle Scholar
  21. 21.
    Wells, D.: Advances in preimplantation genetic diagnosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 115, S97–S101 (2004)CrossRefGoogle Scholar
  22. 22.
    Herwig, R., Schmidt, A., Steinfath, M., OBrian, J., Seidel, H., Meier-Ewert, S., Lehrach, H., Radelof, U.: Information theoretical probe selection for hybridization experiments. Bioinformatics 16, 890–898 (2000)CrossRefGoogle Scholar
  23. 23.
    Borneman, J., Chrobak, M., Vedova, C.D., Figueroa, A., Jiang, T.: Probe selection algorithms with applications in the analysis of microbial communities. Bioinformatics 17, S39–S48 (2001)CrossRefGoogle Scholar
  24. 24.
    Rash, S., Gusfield, D.: String barcoding: uncovering optimal virus signatures. In: Myers, G., Hannenballi, S., Istrail, S., Perzner, P., Waterman, M. (eds.) RECOMB ’02: Proceedings of the Sixth Annual International Conference on Computational Biology, pp. 254–261. ACM Press, New York (2002)CrossRefGoogle Scholar
  25. 25.
    Klau, G.W., Rahmann, S., Schliep, A., Vingron, M., Reinert, K.: Optimal robust nonunique probe selection using integer linear programming. Bioinformatics 20, I186–I193 (2004)CrossRefGoogle Scholar
  26. 26.
    Schliep, A., Torney, D.C., Rahmann, S.: Group testing with DNA chips: generating designs and decoding experiments. In: Proc. IEEE Comput. Soc. Bioinform. Conf. 2, pp. 84–91. IEEE, Los Alamitos (2003)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Catherine Putonti
    • 1
    • 2
  • Meizhuo Zhang
    • 1
  • Lennart Johnsson
    • 1
  • Yuriy Fofanov
    • 1
    • 2
  1. 1.University of Houston, Department of Computer Science, 218 Philip G. Hoffman Hall, Houston, Texas 77204-3058USA
  2. 2.University of Houston, Department of Biology and Biochemistry, Houston, Texas 77204-5001USA

Personalised recommendations