Complexity of Default Logic on Generalized Conjunctive Queries

  • Philippe Chapdelaine
  • Miki Hermann
  • Ilka Schnoor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4483)


Reiter’s default logic formalizes nonmonotonic reasoning using default assumptions. The semantics of a given instance of default logic is based on a fixpoint equation defining an extension. Three different reasoning problems arise in the context of default logic, namely the existence of an extension, the presence of a given formula in an extension, and the occurrence of a formula in all extensions. Since the end of 1980s, several complexity results have been published concerning these default reasoning problems for different syntactic classes of formulas. We derive in this paper a complete classification of default logic reasoning problems by means of universal algebra tools using Post’s clone lattice. In particular we prove a trichotomy theorem for the existence of an extension, classifying this problem to be either polynomial, NP-complete, or Σ2P-complete, depending on the set of underlying Boolean connectives. We also prove similar trichotomy theorems for the two other algorithmic problems in connection with default logic reasoning.


Boolean Function Constraint Satisfaction Problem Closure Property Propositional Formula Satisfying Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-Eliyahu-Zohary, R.: Yet some more complexity results for default logic. Artificial Intelligence 139(1), 1–20 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Böhler, E., et al.: Playing with Boolean blocks, parts I and II. SIGACT News, 34(4), 38–52 (2003) and 35(1), 22–35 (2004)Google Scholar
  3. 3.
    Böhler, E., et al.: Equivalence and isomorphism for Boolean constraint satisfaction. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 412–426. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Böhler, E., et al.: Bases for Boolean co-clones. Information Processing Letters 96(2), 59–66 (2005)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bulatov, A., Jeavons, P., Krokhin, A.: Classifying the complexity of constraints using finite algebras. SIAM Journal on Computing 34(3), 720–742 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Cadoli, M., Eiter, T., Gottlob, G.: Default logic as a query language. IEEE Transactions on Knowledge and Data Engineering 9(3), 448–463 (1997)CrossRefGoogle Scholar
  7. 7.
    Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Constraint Satisfaction Problems. SIAM, Philadelphia (2001)zbMATHGoogle Scholar
  8. 8.
    Creignou, N., Zanuttini, B.: A complete classification of the complexity of propositional abduction (Submitted October 2004)Google Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness. W.H. Freeman, New York (1979)zbMATHGoogle Scholar
  10. 10.
    Geiger, D.: Closed systems of functions and predicates. Pacific Journal of Mathematics 27(1), 95–100 (1968)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Gottlob, G.: Complexity results for nonmonotonic logics. Journal of Logic and Computation 2(3), 397–425 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. Journal of the Association for Computing Machinery 44(4), 527–548 (1997)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Kautz, H.A., Selman, B.: Hard problems for simple default logics. Artificial Intelligence 49(1-3), 243–279 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Marek, W., Truszczyński, M.: Modal logic for default reasoning. Annals of Mathematics and Artificial Intelligence 1(1-4), 275–302 (1990)CrossRefzbMATHGoogle Scholar
  15. 15.
    Niemelä, I.: On the decidability and complexity of autoepistemic reasoning. Fundamenta Informaticae 17(1-2), 117–155 (1992)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Nordh, G.: A trichotomy in the complexity of propositional circumscription. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 257–269. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Nordh, G., Zanuttini, B.: Propositional abduction is almost always hard. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proc. 19th IJCAI, Edinburgh, UK, pp. 534–539 (2005)Google Scholar
  18. 18.
    Pippenger, N.: Theories of Computability. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  19. 19.
    Pöschel, R., Kalužnin, L.A.: Funktionen- und Relationenalgebren. Deutscher Verlag der Wissenschaften, Berlin (1979)Google Scholar
  20. 20.
    Post, E.L.: The two-valued iterative systems of mathematical logic. Annals of Mathematical Studies 5, 1–122 (1941)MathSciNetGoogle Scholar
  21. 21.
    Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2), 81–132 (1980)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. 10th Symposium on Theory of Computing (STOC’78), San Diego, California, USA, pp. 216–226 (1978)Google Scholar
  23. 23.
    Stillman, J.: It’s not my default: the complexity of membership problems in restricted propositional default logics. In: Proc. 8th AAAI, Boston, MA, USA, pp. 571–578 (1990)Google Scholar
  24. 24.
    Stillman, J.: The complexity of propositional default logics. In: Proc. 10th AAAI, San Jose, California, USA, July 1992, pp. 794–799 (1992)Google Scholar
  25. 25.
    Wrathall, C.: Complete sets and the polynomial-time hierarchy. Theoretical Computer Science 3(1), 23–33 (1976)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Zhao, X., Ding, D.: Complexity results for 2CNF default theories. Fundamenta Informaticae 45(4), 393–404 (2001)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Philippe Chapdelaine
    • 1
  • Miki Hermann
    • 2
  • Ilka Schnoor
    • 3
  1. 1.GREYC (UMR 6072), Université de CaenFrance
  2. 2.LIX (UMR 7161), École PolytechniqueFrance
  3. 3.Theoretische Informatik, Universität HannoverGermany

Personalised recommendations