Advertisement

Approximate Implicitization of Space Curves and of Surfaces of Revolution

  • Mohamed Shalaby
  • Bert Jüttler

We present techniques for creating an approximate implicit representation of space curves and of surfaces of revolution. In both cases, the proposed techniques reduce the problem to that of implicitization of planar curves. For space curves, which are described as the intersection of two implicitly defined surfaces, we show how to generate an approximately orthogonalized implicit representation. In the case of surfaces of revolution, we address the problem of avoiding unwanted branches and singular points in the region of interest.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aigner, M., Jüttler, B., Kim, M.-S.: Analyzing and enhancing the robustness of implicit representations, in: Geometric Modelling and Processing 2004, IEEE Press, 131-140.Google Scholar
  2. 2.
    Chuang, J., Hoffmann, C.: On local implicit approximation and its applications. ACM Trans. Graphics 8, 4:298-324, (1989)zbMATHCrossRefGoogle Scholar
  3. 3.
    Corless, R., Giesbrecht, M., Kotsireas, I., Watt, S.: Numerical implicitization of parametric hypersurfaces with linear algebra. In: AISC’2000 Proceedings, Springer, LNAI 1930.Google Scholar
  4. 4.
    Cox, D., Little, J., O’Shea, D.: Using algebraic geometry, Springer Verlag, New York 1998.zbMATHGoogle Scholar
  5. 5.
    Cox, D., Goldman, R., Zhang, M.: On the validity of implicitization by moving quadrics for rational surfaces with no base points, J. Symbolic Computation, 11, (1999)Google Scholar
  6. 6.
    Dokken, T., et al.: Intersection algorithms for geometry based IT-applications using approximate algebraic methods, EU project IST-2001-35512 GAIA II, 2002-2005.Google Scholar
  7. 7.
    Dokken, T., and Thomassen, J., Overview of Approximate Implicitization, in: Topics in Algebraic Geometry and Geometric Modeling, AMS Cont. Math. 334 (2003), 169-184.Google Scholar
  8. 8.
    Gonzalez-Vega, L.: Implicitization of parametric curves and surfaces by using multidimensional Newton formulae. J. Symb. Comput. 23 (2-3), 137-151 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hoschek, J., and Jüttler, B.: Techniques for fair and shape-preserving surface fitting with tensor-product B-splines, in: J.M. Peña (ed.), Shape Preserving Representations in Computer Aided Design, Nova Science Publishers, New York 1999, 163-185.Google Scholar
  10. 10.
    Jüttler, B.: Least-squares fitting of algebraic spline curves via normal vector estimation, in: Cipolla, R., Martin, R.R. (eds.), The Mathematics of Surfaces IX, Springer, London, 263-280, 2000.Google Scholar
  11. 11.
    Jüttler, B., and Felis, A.: Least-squares fitting of algebraic spline surfaces, Adv. Comp. Math. 17 (2002), 135-152.zbMATHCrossRefGoogle Scholar
  12. 12.
    Mourrain, B., Pavone, J.-P., Subdivision methods for solving polynomial equations, Technical Report 5658, INRIA Sophia-Antipolis, 2005.Google Scholar
  13. 13.
    Sampson, P. D. Fitting conic sections to very scattered data: an iterative refinement of the Bookstein algorithm, Computer Graphics and Image Processing 18 (1982), 97-108.CrossRefGoogle Scholar
  14. 14.
    Sederberg, T., Chen F.: Implicitization using moving curves and surfaces. Siggraph 1995, 29,301-308, (1995)Google Scholar
  15. 15.
    Shalaby, M. F., Thomassen, J. B., Wurm, E. M., Dokken, T., Jüttler, B.: Piecewise approximate implicitization: Experiments using industrial data, in: Algebraic Geometry and Geometric Modeling (Mourrain, B., Elkadi, M., Piene, R., eds.), Springer, in press.Google Scholar
  16. 16.
    Wurm, E., Jüttler, B.: Approximate implicitization via curve fitting, in Kobbelt, L., Schröder, P., Hoppe, H. (eds.), Symposium on Geometry Processing, Eurographics / ACM Siggraph, New York 2003, 240-247.Google Scholar
  17. 17.
    Wurm, E., Thomassen, J., Jüttler, B., Dokken, T.: Comparative Benchmarking of Methods for Approximate Implicitization, in: Neamtu, M., and Lucian, M. (eds.), Geometric Design and Computing, Nashboro Press, Brentwood 2004, 537-548.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mohamed Shalaby
    • Bert Jüttler

      There are no affiliations available

      Personalised recommendations