User Profiles for Personalized Information Access

  • Susan Gauch
  • Mirco Speretta
  • Aravind Chandramouli
  • Alessandro Micarelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4321)


The amount of information available online is increasing exponentially. While this information is a valuable resource, its sheer volume limits its value. Many research projects and companies are exploring the use of personalized applications that manage this deluge by tailoring the information presented to individual users. These applications all need to gather, and exploit, some information about individuals in order to be effective. This area is broadly called user profiling. This chapter surveys some of the most popular techniques for collecting information about users, representing, and building user profiles. In particular, explicit information techniques are contrasted with implicitly collected user information using browser caches, proxy servers, browser agents, desktop agents, and search logs. We discuss in detail user profiles represented as weighted keywords, semantic networks, and weighted concepts. We review how each of these profiles is constructed and give examples of projects that employ each of these techniques. Finally, a brief discussion of the importance of privacy protection in profiling is presented.


Resource Description Framework User Profile Semantic Network Proxy Server Concept Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Acxiom Corporatio, (last access on February 2006)
  2. 2.
    Adar, E., Karger, D.: Haystack: Per-User Information Environments. In: Proceedings of the 8th International Conference on Information Knowledge Management (CIKM), Kansas City, Missouri, November 2-6, pp. 413-422 (1999)Google Scholar
  3. 3.
    Altavista search engine, (last access on October 2005)
  4. 4.
    Asnicar, F., Tasso, C.: ifWeb: A Prototype of User Model-Based Intelligent Agent for Documentation Filtering and Navigation in the World Wide Web. In: Proceedings of the 6th International Conference on User Modeling, Chia Laguna, Sardinia, Italy, June 2-5, pp. 3-11 (1997)Google Scholar
  5. 5.
    Balabanovic, M., Shoham, Y.: Fab: Content-Based Collaborative Recommendation. Communications of the ACM 40(3) March, 66–72 (1997)CrossRefGoogle Scholar
  6. 6.
    Barrett, R., Maglio, P., Kellem, D.C.: How to Personalize the Web. In: Proceedings of the SIGCHI conference on Human factors in computing systems, Atlanta, March 22-27, pp. 75-82 (1997)Google Scholar
  7. 7.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5), 34–43 (2001)CrossRefGoogle Scholar
  8. 8.
    Bloedorn, E., Mani, I., MacMillan, T.R.: Machine Learning of User Profiles: Representational Issues. In: Proceedings of AAAI 96, IAAA 96, vol. 1, Portland, Oregon, August 4-8, pp. 433–438. AAAI Press, Menlo Park (1996)Google Scholar
  9. 9.
    Chaffee, J., Gauch, S.: Personal Ontologies for Web Navigation. In: Proceedings of the 9th International Conference On Information Knowledge Management (CIKM), Washington, DC, November 6-11, pp. 227-234 (2000)Google Scholar
  10. 10.
    Challam, V., Gauch, S.: Contextual Information Retrieval Using Ontology Based User Profiles. In: ACM Transactions on Internet Technologies (pending)Google Scholar
  11. 11.
    Chan, K.P.: A Non-Invasive Learning Approach to Building User Web Profiles. In: Proceedings of the KDD-99 Workshop on Web Usage Analysis and User Profiling, San Diego, August 15-18, pp. 39-55 (1999), (last access on October 2006)
  12. 12.
    Chan, K.P.: Constructing Web User Profiles: A Non-Invasive Learning Approach. In: Masand, B., Spiliopoulou, M. (eds.) Web Usage Analysis and User Profiling. LNCS (LNAI), vol. 1836, pp. 39–55. Springer, Heidelberg (2000)Google Scholar
  13. 13.
    Chen, L., Sycara, K.: A Personal Agent for Browsing and Searching. In: Proceedings of the 2nd International Conference on Autonomous Agents, Minneapolis/St. Paul, May 9-13, pp. 132-139 (1998)Google Scholar
  14. 14.
    Chen, Y.-S., Shahabi, C.: Automatically improving the accuracy of user profiles with genetic algorithm. In: Proceedings of IASTED International Conference on Artificial Intelligence and Soft Computing, Cancun, Mexico, May 21-24, pp. 283-288 (2001)Google Scholar
  15. 15.
    Chen, C., Chen, M., Sun, Y.: PVA: A. self-adaptive Personal View Agent. Journal of Intelligent Information Systems 18(2-3), 173–194 (2002)CrossRefGoogle Scholar
  16. 16.
    Chesnais, P., Mucklo, M., Sheena, J.: The Fishwrap Personalized News System. In: Proceedings of IEEE 2nd International Workshop on Community Networking: Integrating Multimedia Services to the Home, Princeton, NJ, June 20-22, pp. 275-282 (1995)Google Scholar
  17. 17.
    Chien, W.: Learning Query Behavio. In: the Haystack System. Master’s thesis, MIT (June 2000)Google Scholar
  18. 18.
    Crabtree, B., Soltysiak, S.: Identifying and Tracking Changing Interests. International Journal on Digital Libraries 2(1), 38–53 (1998)CrossRefGoogle Scholar
  19. 19.
    The DARPA Agent Markup Language Homepage, (last access on October 2005)
  20. 20.
    Deerwester, S., Dumais, S., Furnas, G., Landauer, T.K., Harshman, R.: Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science 41(6), 391–407 (1990)CrossRefGoogle Scholar
  21. 21.
    Dolog, P., Nejdl, W.: Semantic Web Technologies for the Adaptive Web. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 697–719. Springer, Heidelberg (2007)Google Scholar
  22. 22.
    Dumais, S., Cutrell, E., Cadiz, J.J., Jancke, G., Sarin, R., Robbins, D.C.: Stuff I’ve seen: a system for personal information retrieval and re-use. In: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval, Toronto, Canada, July 28 - August 01, pp. 72–79. ACM, New York (2003)Google Scholar
  23. 23.
    Dumais, S., Chen, H.: Hierarchical classification of Web content. In: Proceedings of the 23rd ACM International Conference on Research and Development in Information Retrieval, pp. 256–263. ACM Press, New York (2000)CrossRefGoogle Scholar
  24. 24.
    Epinions website, (last access on February, 2006)
  25. 25.
    Gasparetti, F.: Adaptive Web Search: User Modeling based on Associative Memory and Multi-Agent Focused Crawling. PhD Thesis, University of Roma Tre (2005)Google Scholar
  26. 26.
    Gasparetti, F., Micarelli, A.: User Profile Generation Based on a Memory Retrieval Theory. In: The 1st International Workshop on Web Personalization, Recommender Systems and Intelligent User Interfaces (WPRSIUI 2005), Reading, UK, October 3-7 (2005),
  27. 27.
    Gauch, S., Chaffee, J., Pretschner, A.: Ontology-Based User Profiles for Search and Browsing. Web Intelligence and Agent Systems 1(3-4), 219–234 (2003)Google Scholar
  28. 28.
    Gentili, G., Micarelli, A., Sciarrone, F.: Infoweb: An Adaptive Information Filtering System for the Cultural Heritage Domain. Applied Artificial Intelligence 17(8-9), 715–744 (2003)Google Scholar
  29. 29.
    Google Desktop, (last access on October 2005)
  30. 30.
    Google Personalized Search, (last access on September 2005)
  31. 31.
    Guarino, N., Masolo, C., Vetere, G.: OntoSeek: Content-Based Access to the Web. IEEE Intelligent Systems 14(3) May, 70–80 (1999)CrossRefGoogle Scholar
  32. 32.
    Guha, R., McCool, R., Miller, E.: Semantic Search. In: Proceedings of the WWW2003, Budapest, Hungary, May 20-24, pp. 700-709 (2003)Google Scholar
  33. 33.
    Haase, P., Hotho, A., Schmidt-Thieme, L., Sure, Y.: Collaborative and Usage-driven evolution of personalized ontologies. In: Proceedings of the 2nd European Semantic Web Conference, Heraklion, Greece, May 29-June 1, pp. 486-499 (2005)Google Scholar
  34. 34.
    Heflin, J., Hendler, J., Luke, S.: SHOE: A Knowledge Representation Language for Internet Applications. Technical Report CS-TR-4078 (UMIACS TR-99-71), University of Maryland at College Park (1999), (last access on September 2005)
  35. 35.
    Hoashi, K., Matsumoto, K., Inoue, N., Hashimoto, K.: Document Filtering method using non-relevant information profile. In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Athens, Greece, July 24-28, pp. 176–183. ACM Press, New York (2000)CrossRefGoogle Scholar
  36. 36.
    Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: a bibliography. ACM SIGIR Forum 37(2), 18–28 (2003)CrossRefGoogle Scholar
  37. 37.
    Kim, H., Chan, P.: Learning implicit user interest hierarchy for context in personalization. In: Proceedings of IUI’ 03, Miami, Florida, January 12-15, pp. 101-108 (2003)Google Scholar
  38. 38.
    Knight, K., Luk, S.: Building a Large Knowledge Base for Machine Translation. In: Proceedings of American Association of Artificial Intelligence Conference (AAAI, Orlando, Florida, July 18–22, pp. 773–778. AAAI Press, Menlo Park (1999)Google Scholar
  39. 39.
    Kobsa, A.: Privacy-Enhanced Web Personalization. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 628–670. Springer, Heidelberg (2007)Google Scholar
  40. 40.
    Kobsa, A.: Generic User Modeling Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 136–154. Springer, Heidelberg (2007)Google Scholar
  41. 41.
    Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., Riedl, J.: GroupLens: Applying Collaborative Filtering To Usenet News. Communications of the ACM 40(3), 77–87 (1997)CrossRefGoogle Scholar
  42. 42.
    Labrou, Y., Finin, T.: Yahoo! As An Ontology – Using Yahoo! Categories To Describe Documents. In: Proceedings of the 8th International Conference On Information Knowledge Management (CIKM), Kansas City, Missouri, November 2-6, pp. 180-187 (1999)Google Scholar
  43. 43.
    Lieberman, H.: Letizia: An Agent That Assists Web Browsing. In: Proceedings of the 14th International Joint Conference On Artificial Intelligence, Montreal, Canada, August, pp. 924-929 (1995)Google Scholar
  44. 44.
    Lieberman, H.: Autonomous Interface Agents. In: Proceedings of the ACM Conference on Computers and Human Interaction (CHI’97), Atlanta, Georgia, March 22-27, pp. 67 - 74 (1997)Google Scholar
  45. 45.
    Liu, F., Yu, C., Meng, W.: Personalized web search by mapping user queries to categories. In: Proceedings CIKM’02, Mclean, Virginia, November 4-9, pp. 558-565 (2002)Google Scholar
  46. 46.
    Liu, F., Yu, C., Meng, W.: Personalized Web Search For Improving Retrieval Effectiveness. IEEE Transactions on Knowledge and Data. Engineering 16(1), 28–40 (2004)CrossRefGoogle Scholar
  47. 47.
    Luke, S., Spector, L., Rager, D., Hendler, J.: Ontology-Based Web Agents. In: Proceedings of the First International Conference on Autonomous Agents (AA’97) Association for Computing Machinery, California, February 5-8, pp. 59-66 (1997)Google Scholar
  48. 48.
    Lycos, (last access on September 2005)
  49. 49.
    Malone, T., Grant, K., Turbak, F., Brobst, S., Cohen, M.: Intelligent Information Sharing Systems. Communications of the ACM 30(5), 390–402 (1987)CrossRefGoogle Scholar
  50. 50.
    Marais, H., Bharat, K.: Supporting cooperative and personal surfing with a desktop assistant. In: Proceedings of ACM UIST’97, Banff, Alberta, Canada, October 14-17, pp. 129–138. ACM Press, New York (1997)Google Scholar
  51. 51.
    McCallum, A.K., Nigam, K., Rennie, J., Seymore, K.: Automating the Construction of Internet Portals with Machine Learning. Information Retrieval 3(2), 127–163 (2000)CrossRefGoogle Scholar
  52. 52.
    Micarelli, A., Gasparetti, F., Sciarrone, F., Gauch, S.: Personalized Search on the World Wide Web. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 195–230. Springer, Heidelberg (2007)Google Scholar
  53. 53.
    Micarelli, A., Sciarrone, F.: Anatomy and Empirical Evaluation of an Adaptive Web-Based Information Filtering System. User Modeling and User-Adapted Interaction 14(2-3), 159–200 (2004)CrossRefGoogle Scholar
  54. 54.
    Micarelli, A., Sciarronne, F., Marinilli, M.: Web Document Modeling. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 155–194. Springer, Heidelberg (2007)Google Scholar
  55. 55.
    Middleton, S.E., Shadbolt, N.R., De Roure, D.C.: Capturing interest through inference and visualization: Ontological user profiling in recommender systems. In: International Conference on Knowledge Capture, K-CAP 2003, Sanibel Island, Florida, September, pp. 62-69 (2003),
  56. 56.
    Minio, M., Tasso, C.: User Modeling for Information Filtering on INTERNET Services: Exploiting an Extended Version of the UMT Shell. In: UM96 Workshop on User Modeling for Information Filtering on the WWW, Kailua-Kona, Hawaii, January 2-5 (1996),
  57. 57.
    Mladenic, D.: Turning Yahoo into an Automatic Web-Page Classifier. In: Proceedings of the 13th European Conference on Aritficial Intelligence ECAI, pp. 473-474 (1998)Google Scholar
  58. 58.
    Mladenić, D.: Personal WebWatcher: Design and Implementation. Technical Report IJS-DP-7472, J. Stefan Institute, Department for Intelligent Systems, Ljubljana, Slovenia (1998), (last access on October 2006)
  59. 59.
    Mobasher, B.: Data Mining for Web Personalization. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 90–135. Springer, Heidelberg (2007)Google Scholar
  60. 60.
    Montebello, M., Gray, W., Hurley, S.: A Personal Evolvable Advisor for WWW Knowledge-Based Systems. In: Proceedings of the 1998 International Database Engineering and Application Symposium (IDEAS’98), Cardiff, Wales, U.K, July 8-10, pp. 224-233 (1998)Google Scholar
  61. 61.
    Moukas, A.: Amalthaea: Information Discovery And Filtering Using A Multiagent Evolving Ecosystem. Applied Artificial Intelligence 11(5), 437–457 (1997)CrossRefGoogle Scholar
  62. 62.
    Netflix Website, (last access on February, 2006)
  63. 63.
    Nichols, D.: Implicit Rating and Filtering. In: Proceedings of the 5th DELOS Workshop on Filtering and Collaborative Filtering, Budapest, November 10-12, pp. 31-36 (1998), (last access on October 2006)
  64. 64.
    Oard, D., Marchionini, G.: A Conceptual Framework for Text Filtering. Technical Report EE-TR-96-25 CAR-TR-830 CLIS-TR-9602 CS-TR-3643. University of Maryland, May (1996)Google Scholar
  65. 65.
    The Open Directory Project (ODP), (last access on September 2005)
  66. 66.
    Papazoglou, M.: Agent-oriented technology in support of e-business. Communications of the ACM 44(4), 71–77 (2001)CrossRefGoogle Scholar
  67. 67.
    Pazzani, M., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007)Google Scholar
  68. 68.
    Pazzani, M., Muramatsu, J., Billsus, D.: Syskill & Webert: Identifying Interesting Web Sites. In: Proceedings of the 13th National Conference On Artificial Intelligence Portland, Oregon, August 4–8, pp. 54-61 (1996)Google Scholar
  69. 69.
    Perkowitz, M., Etzioni, O.: Adaptive Web Sites: Automatically Synthesizing Web Pages. AAAI, Madison, Wisconsin, July 26–30, pp. 727-732 (1998)Google Scholar
  70. 70.
    Pitkow, J., Schütze, H., Cass, T., et al.: Personalized search. CACM 45(9), 50–55 (2002)Google Scholar
  71. 71.
    Pretschner, A.: Ontology Based Personalized Search. Master’s thesis. University of Kansas (June 1999)Google Scholar
  72. 72.
    Pretschner, A., Gauch, S.: Ontology Based Personalized Search. In: Proceedings of the 11th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), November 8-10, pp. 391–398. IEEE Computer Society Press, Los Alamitos (1999)CrossRefGoogle Scholar
  73. 73.
    Quiroga, L., Mostafa, J.: Empirical evaluation of explicit versus implicit acquisition of user profiles in information filtering systems. In: D. H. Kraft (Ed.), Proceedings of the 63rd annual meeting of the American Society for Information Science and Technology, Medford, NJ. Information Today 37, 4-13 (2000)Google Scholar
  74. 74.
    Resource Description Framework, (last access on October 2005)
  75. 75.
    Resource Description Framework Schema, (last access on October 2005)
  76. 76.
    Rich, E.: Users are Individuals: Individualizing User Models. International Journal of Man-Machine Studies 18, 199–214 (1983)CrossRefGoogle Scholar
  77. 77.
    Ruiz, M., Srinivasan, P.: Hierarchical Neural Networks For Text Categorization. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Berkeley, California, August 15-19, pp. 281–282. ACM Press, New York (1999)CrossRefGoogle Scholar
  78. 78.
    Sakagami, H., Kamba, T.: Learning Personal Preferences on Online Newspaper Articles From User Behaviors. In: Proceedings of the 6th International WWW Conference, Santa Clara, California, April 7-11, pp. 291-300 (1997)Google Scholar
  79. 79.
    Salton, G.: Developments in automatic text retrieval. Science, vol. 253, pp. 974–979 (1991)Google Scholar
  80. 80.
    Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)zbMATHGoogle Scholar
  81. 81.
    Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative Filtering Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)Google Scholar
  82. 82.
    Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Computing Surveys 34(1), 1–47 (2002)CrossRefGoogle Scholar
  83. 83.
    Seruku Toolbar, (last access on October 2005)
  84. 84.
    Shavlik, J., Eliassi-Rad, T.: Intelligent Agents for Web-Based Tasks: An Advice-Taking Approach. In: Working Notes of the AAAI/ICML-98 Workshop on Learning for text categorization, Madison, WI, July 26-27, pp. 26–27. AAAI Press, Menlo Park (1998), (last access on October 2006)Google Scholar
  85. 85.
    Shavlik, J., Calcari, S., Eliassi-Rad, T., Solock, J.: An Instructable, Adaptive Interface for Discovering and Monitoring Information on the World Wide Web. In: Proceedings of the 1999 International Conference on Intelligent User Interfaces. Redondo Beach, California, January 5-8, pp. 157-160 (1999)Google Scholar
  86. 86.
    Sheth, B.: A Learning Approach to Personalized Information Filtering. Master’s thesis, Massachusetts Institute of Technology (1994)Google Scholar
  87. 87.
    Sieg, A., Mobasher, B., Burke, R.: Inferring users information context: Integrating user profiles and concept hierarchies. In: 2004 Meeting of the International Federation of Classification Societies, IFCS, Chicago, July (2004),
  88. 88.
    Speretta, M., Gauch, S.: Personalized Search based on User Search Histories. In: IEEE/WIC/ACM International Conference on Web Intelligence (WI’05), France, September 19-22, pp. 622–628. ACM Press, New York (2005)CrossRefGoogle Scholar
  89. 89.
    Stadnyk, I., Kass, R.: Modeling User’s Interests in Information Filters, pp. 49–50. ACM Press, New York (1992)Google Scholar
  90. 90.
    Soltysiak, S.J., Crabtree, I.B.: Automatic Learning Of User Profiles - Towards the Personalization of Agent Services. BT Technology Journal 16(3), 110–117 (1998)CrossRefGoogle Scholar
  91. 91.
    Sorensen, H., McElligott, M.: PSUN: A Profiling System for Usenet News. In: Proceedings of CIKM’95 Workshop on Intelligent Information Agents, Baltimore Maryland, December 1-2 (1995)Google Scholar
  92. 92.
    Stefani, A., Strappavara, C.: Personalizing Access to Web Sites: The SiteIF Project. In: Proceedings of the 2nd Workshop on Adaptive Hypertext and Hypermedia HYPERTEXT’98 Pittsburgh, June 20-24 (1998), HT98_workshop/Stefani/Stefani.html
  93. 93.
    Sugiyama, K., Hatano, K., Yoshikawa, M.: Adaptive web search based on user profile constructed without any effort from users. In: Proceedings 13th International Conference on World Wide Web, New York, May 17-22, pp. 675-684 (2004)Google Scholar
  94. 94.
    SurfSaver, (last access on October 2005)
  95. 95.
    Tan, A.: Adaptive Resonance Associative Map. Neural Networks 8(3), 437–446 (1995)CrossRefGoogle Scholar
  96. 96.
    Tan, A., Teo, C.: Learning user profiles for personalized information dissemination. In: Proceedings of 1998 IEEE International Joint Conference on Neural Networks, Alaska, May 4-9, pp. 183–188. IEEE Computer Society Press, Los Alamitos (1998)CrossRefGoogle Scholar
  97. 97.
    Tanudjaja, F., Mui, L.: Persona: A Contextualized and Personalized Web Search. In: Proc 35th Hawaii International Conference on System Sciences, Big Island, Hawaii, January, p. 53 (2002)Google Scholar
  98. 98.
    Teevan, J., Dumais, S., Horvitz, E.: Personalizing Search via Automated Analysis of Interests and Activities. In: Proceedings of 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Salvador, Brazil, August 15-19, pp. 449–456. ACM Press, New York (2005)CrossRefGoogle Scholar
  99. 99.
    Trajkova, J., Gauch, S.: Improving Ontology-Based User Profiles. In: Proceedings of RIAO 2004, University of Avignon (Vaucluse), France, April 26-28, pp. 380-389 (2004)Google Scholar
  100. 100.
    Wærn, A.: User Involvement in Automatic Filtering: An Experimental Study. User Modeling and User-Adaptive Interaction 14(2-3) June, 201–237 (2004)CrossRefGoogle Scholar
  101. 101.
    Web-Ontology(WebOnt) Working Group, (last access on February 2004)
  102. 102.
    White, R.W., Jose, J.M., Ruthven, I.: Comparing explicit and implicit feedback techniques for Web retrieval: TREC-10 interactive track report. In: Proceedings of the Tenth Text Retrieval Conference, TREC2001, Gaithersburg, MD, pp. 534-538 (2001),
  103. 103.
    Widyantoro, D.H., Yin, J., El Nasr, M., Yang, L., Zacchi, A., Yen, J.: Alipes: A Swift Messenge. In: Cyberspace. In: Proc. 1999 AAAI Spring Symposium Workshop on Intelligent Agents in Cyberspace, Stanford, March 22-24, pp. 62-67 (1999),
  104. 104.
    Widyantoro, D.H., Ioerger, T.R., Yen, J.: Learning User Interest Dynamics with Three-Descriptor Representation. Journal of the American Society of Information Science and Technology (JASIST) 52(3) February, 212–225 (2001)CrossRefGoogle Scholar
  105. 105.
    The Wordnet Website, (last access on February 2006)
  106. 106.
    eXtensible Markup Language, (last access on October 2005)
  107. 107.
    Yam search engine, (last access on October 2005)
  108. 108.
    Yan, T., García-Molina, H.: SIFT – A Tool for Wide-Area Information Dissemination. In: Proceedings of USENIX Technical Conference, New Orleans, Louisiana, January 16-20, pp. 177-186 (1995)Google Scholar
  109. 109.
    Yang, Y., Liu, X.: A Re-Examination Of Text Categorization Methods. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, California, August 15-19, pp. 42–49. ACM Press, New York (1999)CrossRefGoogle Scholar
  110. 110.
    Yahoo Personalized Portal, (last access on September 2005)
  111. 111.
    Yahoo Directory, (last access on October 2005)
  112. 112.
    Zhu, H., Zhong, J., Li, J., Yu, Y.: An Approach for Semantic Search by Matching RDF Graphs. In: Proceedings of the Fifteenth International Florida Artificial Intelligence Research Society Conference, Pensacola Beach, Florida, May 14-16, pp. 450-454 (2002)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Susan Gauch
    • 1
  • Mirco Speretta
    • 1
  • Aravind Chandramouli
    • 1
  • Alessandro Micarelli
    • 2
  1. 1.Electrical Engineering and Computer Science, Information & Telecommunication Technology Center, 2335 Irving Hill Road, Lawrence Kansas 66045-7612USA
  2. 2.Department of Computer Science and Automation, Artificial Intelligence Laboratory, Roma Tre University, Via della Vasca Navale, 79 00146 RomeItaly

Personalised recommendations