Case-Based Recommendation

  • Barry Smyth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4321)

Abstract

Recommender systems try to help users access complex information spaces. A good example is when they are used to help users to access online product catalogs, where recommender systems have proven to be especially useful for making product suggestions in response to evolving user needs and preferences. Case-based recommendation is a form of content-based recommendation that is well suited to many product recommendation domains where individual products are described in terms of a well defined set of features (e.g., price, colour, make, etc.). These representations allow case-based recommenders to make judgments about product similarities in order to improve the quality of their recommendations and as a result this type of approach has proven to be very successful in many e-commerce settings, especially when the needs and preferences of users are ill-defined, as they often are. In this chapter we will describe the basic approach to case-based recommendation, highlighting how it differs from other recommendation technologies, and introducing some recent advances that have led to more powerful and flexible recommender systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. AI Communications 7(1), 39–52 (1994)Google Scholar
  2. 2.
    Aha, D.W.: Proceedings of the Workshop in Mixed-Initiative Case-Based Reasoning. Workshop Programme at the 6th European Conference in Case-Based Reasoning (2002), http://home.earthlink.net/~dwaha/research/meetings/eccbr02-micbrw/
  3. 3.
    Aha, D.W., Maney, T., Breslow, L.A.: Supporting Dialogue Inferencing in Conversational Case-Based Reasoning. In: Smyth, B., Cunningham, P. (eds.) Proceedings of the 4th European Workshop on Case-Based Reasoning, pp. 262–273. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Aha, D.W., Breslow, L.A.: Refining Conversational Case Libraries. In: Leake, D., Plaza, E. (eds.) Proceedings of the 2nd International Conference on Case-Based Reasoning, pp. 267–278. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Balabanovic, M., Shoham, Y.: FAB: Content-Based Collaborative Recommender. Communications of the ACM 40(3), 66–72 (1997)CrossRefGoogle Scholar
  6. 6.
    Bergmann, R., Cunningham, P.: Acquiring Customer’s Requirements in Electronic Commerce. Artificial Intelligence Review 18(3–4), 163–193 (2002)CrossRefGoogle Scholar
  7. 7.
    Bergmann, R., Richter, M., Schmitt, S., Stahl, A., Vollrath, I.: Utility-Oriented Matching: A New Research Direction for Case-Based Reasoning. In: Proceedings of the German Workshop on Case-Based Reasoning, Baden-Baden, pp. 264–274 (2001)Google Scholar
  8. 8.
    Billsus, D., Pazzani, M.J.: Adaptive news access. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 550–572. Springer, Heidelberg (2007)Google Scholar
  9. 9.
    Billsus, D., Pazzani, M.J., Chen, J.: A learning agent for wireless news access. In: IUI ’00: Proceedings of the 5th international conference on Intelligent user interfaces, pp. 33–36. ACM Press, New York (2000), doi:10.1145/325737.325768CrossRefGoogle Scholar
  10. 10.
    Bradley, K., Rafter, R., Smyth, B.: Case-Based User Profiling for Content Personalization. In: Brusilovsky, P., Stock, O., Strapparava, C. (eds.) AH 2000. LNCS, vol. 1892, pp. 62–72. Springer, Heidelberg (2000)Google Scholar
  11. 11.
    Bradley, K., Smyth, B.: Improving Recommendation Diversity. In: O’Donoghue, D. (ed.) Proceedings of the 12th National Conference in Artificial Intelligence and Cognitive Science, Maynooth, Ireland, pp. 75–84 (2001)Google Scholar
  12. 12.
    Branting, K., Lester, J., Mott, B.: Dialog Management for Conversational Case-Based Reasoning. In: Funk, P., Calero, P.A.G. (eds.) Proceedings of the 7th European Conference on Case-Based Reasoning, pp. 77–90. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Branting, K.: Acquiring Customer Preferences from Return-Set Selections. In: Aha, D.W., Watson, I. (eds.) Proceedings of the 4th International Conference on Case-Based Reasoning, pp. 59–73. Springer, Heidelberg (2001)Google Scholar
  14. 14.
    Bridge, D.: Diverse Product Recommendations Using an Expressive Language for Case-Retrieval. In: Craw, S., Preece, A. (eds.) Proceedings of the 6th European Conference on Case-Based Reasoning, pp. 43–57. Springer, Heidelberg (2002)Google Scholar
  15. 15.
    Bridge, D.: Towards conversational recommender systems: A dialogue grammar approach. In: Aha, D.W. (ed.) Proceedings of the Workshop in Mixed-Initiative Case-Based Reasoning, Workshop Programme at the 6th European Conference in Case-Based Reasoning, pp. 9–22 (2002)Google Scholar
  16. 16.
    Bridge, D., Goker, M., McGinty, L., Smyth, B.: Case-Based Recommender Systems. Knowledge Engineering Review 20(3), 315–320 (2006)CrossRefGoogle Scholar
  17. 17.
    Bridge, D.: Product recommendation systems: A new direction. In: Weber, R., Wangenheim, C. (eds.) Procs. of the Workshop Programme at the Fourth International Conference on Case-Based Reasoning, pp. 79–86 (2001)Google Scholar
  18. 18.
    Brusilovsky, P., Millan, E.: User Models for Adaptive Hypermedia and Adaptive Educational Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 3–53. Springer, Heidelberg (2007)Google Scholar
  19. 19.
    Burke, R.: Conceptual Indexing and Active Retrieval of Video for Interactive Learning Environments. Knowledge-Based Systems 9(8), 491–499 (1996)CrossRefGoogle Scholar
  20. 20.
    Burke, R.: Hybrid Web Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg (2007)Google Scholar
  21. 21.
    Burke, R., Hammond, K., Young, B.: Knowledge-based navigation of complex information spaces. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence, Portland, pp. 462–468. MIT Press, Cambridge (1996)Google Scholar
  22. 22.
    Burke, R., Hammond, K., Young, B.C.: The FindMe Approach to Assisted Browsing. Journal of IEEE Expert 12(4), 32–40 (1997)CrossRefGoogle Scholar
  23. 23.
    Cawsey, A., Grasso, F., Paris, C.: Adaptive Information for Consumers of Healthcare. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 465–484. Springer, Heidelberg (2007)Google Scholar
  24. 24.
    Chin, D.N.: Acquiring User Models. Artificial Intelligence Review 7(3-4), 185–197 (1989)CrossRefGoogle Scholar
  25. 25.
    Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. In: NIPS ’97: Proceedings of the 1997 conference on Advances in neural information processing systems 10, pp. 451–457. MIT Press, Cambridge (1998)Google Scholar
  26. 26.
    Cotter, P., Smyth, B.: WAPing the Web: Content Personalisation for WAP-Enabled Devices. In: Proceedings of the International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems, Trento, Italy, pp. 98–108. Springer, Heidelberg (2000)Google Scholar
  27. 27.
    Coyle, L., Cunningham, P.: Improving Recommendation Ranking by Learning Personal Feature Weights. In: Funk, P., Calero, P.A.G. (eds.) Proceedings of the 7th European Conference on Case-Based Reasoning, pp. 560–572. Springer, Heidelberg (2004)Google Scholar
  28. 28.
    Coyle, L., Cunningham, P., Hayes, C.: A Case-Based Personal Travel Assistant for Elaborating User Requirements and Assessing Offers. In: Craw, S., Preece, A. (eds.) Proceedings of the 6th European Conference on Case-Based Reasoning, pp. 505–518. Springer, Heidelberg (2002)Google Scholar
  29. 29.
    Cunningham, P., Doyle, D., Loughrey, J.: An Evaluation of the Usefulness of Case-Based Explanation. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 191–199. Springer, Heidelberg (2003)Google Scholar
  30. 30.
    Dahlen, B., Konstan, J., Herlocker, J., Good, N., Borchers, A., Riedl, J.: Jump-starting movieLens: User benefits of starting a collaborative filtering system with ”dead-data”. TR 98-017, University of Minnesota (1998)Google Scholar
  31. 31.
    de Mantaras, R.L., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Faltings, B., Maher, M-L., Cox, M.T., Forbus, K., Keane, M., Aamody, A., Watson, I.: Retrieval, reuse, Revision, and Retention in Case-Based Reasoning. Knowledge Engineering Review 20(3), 215–240 (2006)CrossRefGoogle Scholar
  32. 32.
    Doyle, M., Cunningham, P.: A Dynamic Approach to Reducing Dialog in On-Line Decision Guides. In: Blanzieri, E., Portinale, L. (eds.) Proceedings of the 5th European Workshop on Case-Based Reasoning, pp. 49–60. Springer, Heidelberg (2000)Google Scholar
  33. 33.
    Faltings, B., Pu, P., Torrens, M., Viappiani, P.: Design Example-Critiquing Interaction. In: Proceedings of the International Conference on Intelligent User Interface. IUI-2004, Funchal, Madeira, Portugal, pp. 22–29. ACM Press, New York (2004)Google Scholar
  34. 34.
    Fox, S., Leake, D.B.: Using Introspective Reasoning to Refine Indexing. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, p. 391. Morgan Kaufmann, San Francisco (1995)Google Scholar
  35. 35.
    Gauch, S., Speretta, M., Chandramouli, A., Micarelli, A.: User Profiles for Personalized Information Access. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 54–89. Springer, Heidelberg (2007)Google Scholar
  36. 36.
    Gervas, P., Gupta, K.M.: Proceedings European Conference on Case-Based Reasoning (ECCBR-04) Explanation Workshop, Madrid, Spain (2004), https://www.cs.tcd.ie/research_groups/mlg/ecbrws2004/
  37. 37.
    Goker, M., Thompson, C.A.: Personalized Conversational Case-Based Recommendation. In: Blanzieri, E., Portinale, L. (eds.) Proceedings of the 5th European Workshop on Case-Based Reasoning, pp. 99–111. Springer, Heidelberg (2000)Google Scholar
  38. 38.
    Goy, A., Ardissono, L., Petrone, G.: Personalization in E-Commerce Applications. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 485–520. Springer, Heidelberg (2007)Google Scholar
  39. 39.
    Hinkle, D., Toomey, C.: Applying Case-Based Reasoning to Manufacturing. Artificial Intelligence Magazine 16(1), 65–73 (1995)Google Scholar
  40. 40.
    Hurley, G., Wilson, D.C.: DubLet: An Online CBR System for Rental Property Accommodation. In: Aha, D.W., Watson, I. (eds.) Proceedings of the 4th International Conference on Case-Based Reasoning, pp. 660–674. Springer, Heidelberg (2001)Google Scholar
  41. 41.
    Jameson, A., Smyth, B.: Recommending to Groups. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 596–627. Springer, Heidelberg (2007)Google Scholar
  42. 42.
    Juell, P., Paulson, P.: Using Reinforcement Learning for Similarity Assessment in Case-Based Systems. IEEE Intelligent Systems 18(4), 60–67 (2003)CrossRefGoogle Scholar
  43. 43.
    Kim, Y., Ok, S., Woo, Y.: A Case-Based Recommender using Implicit Rating Techniques. In: De Bra, P., Brusilovsky, P., Conejo, R. (eds.) AH 2002. LNCS, vol. 2347, pp. 62–72. Springer, Heidelberg (2002)Google Scholar
  44. 44.
    Kobsa, A.: Generic User Modeling Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 136–154. Springer, Heidelberg (2007)Google Scholar
  45. 45.
    Kolodner, J.: Judging which is the ”best” case for a case-based reasoner. In: Proceedings of the Second Workshop on Case-Based Reasoning, pp. 77–81. Morgan Kaufmann, San Francisco (1989)Google Scholar
  46. 46.
    Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  47. 47.
    Konstan, J.A., Miller, B.N, Maltz, D., Herlocker, J.L., Gorgan, L.R., Riedl, J.: GroupLens: Applying collaborative filtering to Usenet news. Communications of the ACM 40(3), 77–87 (1997)CrossRefGoogle Scholar
  48. 48.
    Leake, D.: Case-Based Reasoning: Experiences,Lessons and Future Directions. MIT Press, Cambridge (1996)Google Scholar
  49. 49.
    Leake, D.B.: Constructive Similarity Assessment: Using Stored Cases to Define New Situations. In: Proceedings of the 14th Annual Conference of the Cognitive Science Society, pp. 313–318. Lawrence Erlbaum Associates, Mahwah (1992)Google Scholar
  50. 50.
    McCarthy, K., Reilly, J., McGinty, L., Smyth, B.: On the Dynamic Generation of Compound Critiques in Conversational Recommender Systems. In: De Bra, P., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 176–184. Springer, Heidelberg (2004)Google Scholar
  51. 51.
    McCarthy, K., Reilly, J., McGinty, L., Smyth, B.: Experiments in dynamic critiquing. In: IUI ’05: Proceedings of the 10th international conference on Intelligent user interfaces, pp. 175–182. ACM Press, New York (2005), doi:10.1145/1040830.1040871CrossRefGoogle Scholar
  52. 52.
    McGinty, L., Smyth, B.: Comparison-Based Recommendation. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 575–589. Springer, Heidelberg (2002)Google Scholar
  53. 53.
    McGinty, L., Smyth, B.: On The Role of Diversity in Conversational Recommender Systems. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 276–290. Springer, Heidelberg (2003)Google Scholar
  54. 54.
    McGinty, L., Smyth, B.: Tweaking Critiquing. In: Proceedings of the Workshop on Personalization and Web Techniques at the International Joint Conference on Artificial Intelligence (IJCAI-03), Acapulco, Mexico, Morgan Kaufmann, San Francisco (2003)Google Scholar
  55. 55.
    McSherry, D.: Increasing Recommendation Diversity Without Loss of Similarity. In: Proceedings of the Sixth UK Workshop on Case-Based Reasoning, Cambridge, UK, pp. 23–31 (2001)Google Scholar
  56. 56.
    McSherry, D.: Diversity-Conscious Retrieval. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 219–233. Springer, Heidelberg (2002)Google Scholar
  57. 57.
    McSherry, D.: Explanation in Case-Based Reasoning: An Evidential Approach. In: Lees, B. (ed.) Proceedings of the 8th UK Workshop on Case-Based Reasoning, Cambridge, UK (2003)Google Scholar
  58. 58.
    McSherry, D.: Similarity and Compromise. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 291–305. Springer, Heidelberg (2003)Google Scholar
  59. 59.
    McSherry, D.: Explaining the Pros and Cons of Conclusions in CBR. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 317–330. Springer, Heidelberg (2004)Google Scholar
  60. 60.
    McSherry, D.: Incremental Relaxation of Unsuccessful Queries. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 331–345. Springer, Heidelberg (2004)Google Scholar
  61. 61.
    Micarelli, A., Gasparetti, F., Sciarrone, F., Gauch, S.: Personalized Search on the World-Wide Web. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 195–230. Springer, Heidelberg (2007)Google Scholar
  62. 62.
    Mobasher, B.: Data Mining for Web Personalization. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 90–135. Springer, Heidelberg (2007)Google Scholar
  63. 63.
    Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization. In: DL ’00: Proceedings of the fifth ACM conference on Digital libraries, pp. 195–204. ACM Press, New York (2000), doi:10.1145/336597.336662CrossRefGoogle Scholar
  64. 64.
    Munoz-Avila, H., Aha, D., Breslow, L.: Integrating Conversational Case Retrieval with Generative Planning. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI), vol. 1898, pp. 210–221. Springer, Heidelberg (2000)Google Scholar
  65. 65.
    Nichols, D.: Implicit Rating and Filtering. In: Proceedings of 5th DELOS Workshop on Filtering and Collaborative Filtering, Budapest, Hungary (Nov. 1997)Google Scholar
  66. 66.
    O’Sullivan, D., Smyth, B., Wilson, D.: In-Depth Analysis of Similarity Knowledge and Metric Contributions to Recommender Performance. In: Proceedings of the 17th International FLAIRS Conference. FLAIRS 2004 CD, Miami Beach, Florida, May 17-19, AAAI Press, FLAIRS (2004)Google Scholar
  67. 67.
    O’Sullivan, D., Wilson, D., Smyth, B.: Improving Case-Based Recommendation: A Collaborative Filtering Approach. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 278–291. Springer, Heidelberg (2002)Google Scholar
  68. 68.
    O’Sullivan, D., Wilson, D., Smyth, B.: Preserving Recommender Accuracy and Diversity in Sparse Datasets. In: Russell, I., Haller, S. (eds.) Proceedings of the 16th International FLAIRS Conference, pp. 139–144. AAAI Press, Menlo Park (2003)Google Scholar
  69. 69.
    Pazzani, M.J., Billsus, D.: Content-Based Recommendation Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007)Google Scholar
  70. 70.
    Pu, P., Faltings, B.: Decision Tradeoff Using Example Critiquing and Constraint Programming. Special Issue on User-Interaction in Constraint Satisfaction. CONSTRAINTS: an International Journal 9(4) (2004)Google Scholar
  71. 71.
    Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1, 81–106 (1986)Google Scholar
  72. 72.
    Quinlan, J.R.: Learning decision tree classifiers. ACM Comput. Surv. 28(1), 71–72 (1996), doi:10.1145/234313.234346CrossRefGoogle Scholar
  73. 73.
    Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)Google Scholar
  74. 74.
    Rafter, R., Bradley, K., Smyth, B.: Automatic Collaborative Filtering Applications for Online Recruitment Services. In: Brusilovsky, P., Stock, O., Strapparava, C. (eds.) AH 2000. LNCS, vol. 1892, pp. 363–368. Springer, Heidelberg (2000)Google Scholar
  75. 75.
    Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Dynamic Critiquing. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 763–777. Springer, Heidelberg (2004)Google Scholar
  76. 76.
    Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Explaining compound critiques. Artificial Intelligence Review (In Press)Google Scholar
  77. 77.
    Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: An open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 Conference on Computer Supported Collaborative Work, pp. 175–186 (1994)Google Scholar
  78. 78.
    Resnick, P., Varian, H.R.: Recommender Systems. CACM 40(3), 56–58 (1997)Google Scholar
  79. 79.
    Ricci, F., Venturini, A., Cavada, D., Mirzadeh, N., Blaas, D., Nones, M.: Product Recommendation with Interactive Query Management and Twofold Similarity. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 479–493. Springer, Heidelberg (2003)Google Scholar
  80. 80.
    Ricci, F., Arslan, B., Mirzadeh, N., Venturini, A.: ITR: A Case-Based Travel Advisory System. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 613–627. Springer, Heidelberg (2002)Google Scholar
  81. 81.
    Ricci, F., Avesani, P.: Learning a Local Similarity Metric for Case-Based Reasoning. In: Aamodt, A., Veloso, M.M. (eds.) Case-Based Reasoning Research and Development. LNCS, vol. 1010, pp. 301–312. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  82. 82.
    Roth-Berghofer, T.R.: Explanations and Case-Based Reasoning: Foundational Issues. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 389–403. Springer, Heidelberg (2004)Google Scholar
  83. 83.
    Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative Filtering Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)Google Scholar
  84. 84.
    Schmitt, S.: simVar; A Similarity-Influenced Question Selection Criterion for e-Sales Dialogs. Artificial Intelligence Review 18(3–4), 195–221 (2002)CrossRefGoogle Scholar
  85. 85.
    Shardanand, U., Maes, P.: Social Information Filtering: Algorithms for Automating ”Word of Mouth”. In: Proceedings of the Denver ACM CHI 1995, pp. 210–217. ACM Press, New York (1995)Google Scholar
  86. 86.
    Shimazu, H.: ExpertClerk: Navigating Shoppers’ Buying Process with the Combination of Asking and Proposing. In: Nebel, B. (ed.) Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-01), Seattle, pp. 1443–1448. Morgan Kaufmann, San Francisco (2001)Google Scholar
  87. 87.
    Shimazu, H., Shibata, A., Nihei, K.: ExpertGuide: A conversational case-based reasoning tool for developing mentors in knowledge spaces. Applied Intelligence 14(1), 33–48 (2002)CrossRefGoogle Scholar
  88. 88.
    Smyth, B., Bradley, K., Rafter, R.: Personalization techniques for online recruitment services. Commun. ACM 45(5), 39–40 (2002), doi:10.1145/506218.506241CrossRefGoogle Scholar
  89. 89.
    Smyth, B., Cotter, P.: Surfing the Digital Wave: Generating Personalized Television Guides Using Collaborative, Case-based Recommendation. In: Proceedings of the Third International Conference on Case-based Reasoning (1999)Google Scholar
  90. 90.
    Smyth, B., Cotter, P.: A Personalized TV Listings Service for the Digital TV Age. Journal of Knowledge-Based Systems 13(2-3), 53–59 (2000)CrossRefGoogle Scholar
  91. 91.
    Smyth, B., Keane, M.: Adaptation-Guided Retrieval: Questioning the Similarity Assumption in Reasoning. Artificial Intelligence 102, 249–293 (1998)MATHCrossRefGoogle Scholar
  92. 92.
    Smyth, B., McClave, P.: Similarity v’s Diversity. In: Aha, D., Watson, I. (eds.) Proceedings of the 3rd International Conference on Case-Based Reasoning, pp. 347–361. Springer, Heidelberg (2001)Google Scholar
  93. 93.
    Smyth, B., McGinty, L.: The Power of Suggestion. In: Proceedings of the International Joint Conference on Artificial Intelligence. IJCAI-03, Acapulco, Mexico, pp. 127–132. Morgan Kaufmann, San Francisco (2003)Google Scholar
  94. 94.
    Smyth, B., Cotter, P.: A personalized television listings service. Communications of the ACM 43(8), 107–111 (2000), doi:10.1145/345124.345161CrossRefGoogle Scholar
  95. 95.
    Sørmo, F., Cassens, J.: Explanation Goals in Case-Based Reasoning. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 165–174. Springer, Heidelberg (2004)Google Scholar
  96. 96.
    Stahl, A.: Learning Feature Weights from Case Order Feedback. In: Aha, D.W., Watson, I. (eds.) Proceedings of the 4th International Conference on Case-Based Reasoning, pp. 502–516 (2001)Google Scholar
  97. 97.
    Tecuci, G., Aha, D.W., Boicu, M., Cox, M., Ferguson, G., Tate, A.: Proceedings of the Workshop on Mixed-Initiative Intelligent Systems, Workshop Programme at the 18th International Joint Conference on Artificial Intelligence (2003), http://lalab.gmu.edu/miis/
  98. 98.
    Thompson, C.A., Goker, M.H., Langley, P.: A Personalized System for Conversational recommendation. Journal of Artificial Intelligence Research 21, 1–36 (2004)CrossRefMathSciNetGoogle Scholar
  99. 99.
    Veloso, M., Munoz-Avila, H., Bergmann, R.: Case-Based Planning: Methods and Systems. AI Communications 9(3), 128–137 (1996)Google Scholar
  100. 100.
    Vollrath, I., Wilke, W., Bergmann, R.: Case-Based Reasoning Support for Online Catalog Sales. IEEE Internet Computing 2(4), 45–54 (1998)CrossRefGoogle Scholar
  101. 101.
    Watson, I.: Applying Case-Based Reasoning: Techniques for Enterprise Systems. Morgan Kaufmann, San Francisco (1997)MATHGoogle Scholar
  102. 102.
    Wettschereck, D., Aha, D.W.: Weighting Features. In: Aamodt, A., Veloso, M.M. (eds.) Case-Based Reasoning Research and Development. LNCS, vol. 1010, pp. 347–358. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  103. 103.
    Wilke, W., Lenz, M., Wess, S.: Intelligent Sales Support with CBR. In: Lenz, M., Bartsch-Spörl, B., Burkhard, H.-D., Wess, S. (eds.) Case-Based Reasoning Technology. LNCS (LNAI), vol. 1400, pp. 91–113. Springer, Heidelberg (1998)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Barry Smyth
    • 1
    • 2
  1. 1.The School of Computer Science and Informatics, University College Dublin, Belfield, Dublin 4Ireland
  2. 2.ChangingWorlds Ltd., South County Business Park, Leopardstown, Dublin 18Ireland

Personalised recommendations