Content-Based Recommendation Systems

  • Michael J. Pazzani
  • Daniel Billsus
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4321)

Abstract

This chapter discusses content-based recommendation systems, i.e., systems that recommend an item to a user based upon a description of the item and a profile of the user’s interests. Content-based recommendation systems may be used in a variety of domains ranging from recommending web pages, news articles, restaurants, television programs, and items for sale. Although the details of various systems differ, content-based recommendation systems share in common a means for describing the items that may be recommended, a means for creating a profile of the user that describes the types of items the user likes, and a means of comparing items to the user profile to determine what to re commend. The profile is often created and updated automatically in response to feedback on the desirability of items that have been presented to the user.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ali, K., van Stam, W.: TiVo: Making Show Recommendations Using a Distributed Collaborative Filtering Architecture. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, pp. 394–401. ACM Press, New York (2004)CrossRefGoogle Scholar
  2. 2.
    Allan, J., Carbonell, J., Doddington, G., Yamron, J., Yang, Y.: Topic Detection and Tracking Pilot Study Final Report. In: Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop, Lansdowne, pp. 194–218 (1998)Google Scholar
  3. 3.
    Balabanovic, M., Shoham, Y.: FAB: Content-based, Collaborative Recommendation. Communications of the Association for Computing Machinery 40(3), 66–72 (1997)Google Scholar
  4. 4.
    Basu, C., Hirsh, H., Cohen, W.: Recommendation as Classification: Using Social and Content-Based Information in Recommendation. In: Proceedings of the 15th National Conference on Artificial Intelligence, Madison, Wisconsin, pp. 714–720 (1998)Google Scholar
  5. 5.
    Belkin, N., Croft, B.: Information Filtering and Information Retrieval: Two Sides of the Same Coin? Communications of the ACM 35(12), 29–38 (1992)CrossRefGoogle Scholar
  6. 6.
    Billsus, D., Pazzani, M.: Learning Collaborative Information Filters. In: Proceedings of the International Conference on Machine Learning, Madison, WI, pp. 46–54. Morgan Kaufmann, San Francisco (1998)Google Scholar
  7. 7.
    Billsus, D., Pazzani, M., Chen, J.: A Learning Agent for Wireless News Access. In: Proceedings of the International Conference on Intelligent User Interfaces, pp. 33–36 (2002)Google Scholar
  8. 8.
    Burke, R.: Hybrid Web Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg (2007)Google Scholar
  9. 9.
    Cohen, W.: Fast Effective Rule Induction. In: Proceedings of the Twelfth International Conference on Machine Learning, Tahoe City, CA, pp. 115–123 (1995)Google Scholar
  10. 10.
    Cohen, W.: Learning Rules that Classify E-mail. In: Papers from the AAAI Spring Symposium on Machine Learning in Information Access, pp. 18–25 (1996)Google Scholar
  11. 11.
    Cohen, W., Hirsh, H.: Joins that Generalize: Text Classification Using WHIRL. In: Proceedings of the Fourth International Conference on Knowledge Discovery & Data Mining, New York, NY, pp. 169–173 (1998)Google Scholar
  12. 12.
    Domingos, P., Pazzani, M.: Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier. Machine Learning 29, 103–130 (1997)MATHCrossRefGoogle Scholar
  13. 13.
    Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley and Sons, New York (1973)MATHGoogle Scholar
  14. 14.
    Foltz, P., Dumais, S.: Personalized Information Delivery: An Analysis of Information Filtering Methods. Communications of the ACM 35(12), 51–60 (1992)CrossRefGoogle Scholar
  15. 15.
    Ittner, D., Lewis, D., Ahn, D.: Text Categorization of Low Quality Images. In: Symposium on Document Analysis and Information Retrieval, Las Vegas, NV, pp. 301–315 (1995)Google Scholar
  16. 16.
    Joachims, T., Freitag, D., Mitchell, T.: WebWatcher: A Tour Guide for the World Wide Web. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence, Nagoya, Japan, pp. 770–775 (1997)Google Scholar
  17. 17.
    Joachims, T.: Text Categorization With Support Vector Machines: Learning with Many Relevant Features. In: European Conference on Machine Learning, Chemnitz, Germany, pp. 137–142 (1998)Google Scholar
  18. 18.
    Kim, J., Lee, B., Shaw, M., Chang, H., Nelson, W.: Application of Decision-Tree Induction Techniques to Personalized Advertisements on Internet Storefronts. International Journal of Electronic Commerce 5(3), 45–62 (2001)Google Scholar
  19. 19.
    Kivinen, J., Warmuth, M.: Exponentiated Gradient versus Gradient Descent for Linear Predictors. Information and Computation 132(1), 1–63 (1997)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Lewis, D., Schapire, R., Callan, J., Papka, R.: Training Algorithms for Linear Text Classifiers. In: Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Konstanz, Germany, pp. 298–306. ACM Press, New York (1996)CrossRefGoogle Scholar
  21. 21.
    Lewis, D.: Naïve (Bayes) at Forty: The Independence Assumption in Information Retrieval. In: European Conference on Machine Learning, Chemnitz, Germany, pp. 4–15 (1998)Google Scholar
  22. 22.
    Loeb, S.: Architecting Personal Delivery of Multimedia Information. Communications of the ACM 35(12), 39–48 (1992)CrossRefGoogle Scholar
  23. 23.
    Mandel, M., Poliner, G., Ellis, D.: Support Vector Machine Active Learning for Music Retrieval. ACM Multimedia Systems Journal 12(1), 3–13 (2006)CrossRefGoogle Scholar
  24. 24.
    Maron, M.: Automatic Indexing: An Experimental Inquiry. Journal of the Association for Computing Machinery 8(3), 404–417 (1961)MATHGoogle Scholar
  25. 25.
    McCallum, A., Rosenfeld, R., Mitchell, T., Ng, A.: Improving Text Classification by Shrinkage in a Hierarchy of Classes. In: Proceedings of the International Conference on Machine Learning, Madison, WI, pp. 359–367. Morgan Kaufmann Publishers, San Francisco (1998)Google Scholar
  26. 26.
    McCallum, A., Nigam, K.: A Comparison of Event Models for Naive Bayes Text Classification. In: AAAI/ICML-98 Workshop on Learning for Text Categorization, Technical Report WS-98-05, pp. 41-48. AAAI Press (1998)Google Scholar
  27. 27.
    Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)MATHGoogle Scholar
  28. 28.
    Nigam, K., McCallum, A., Thrun, S., Mitchell, T.: Learning to Classify Text from Labeled and Unlabeled Documents. In: Proceedings of the 15th International Conference on Artificial Intelligence, Madison, WI, pp. 792–799 (1998)Google Scholar
  29. 29.
    Pazzani, M., Billsus, D.: Learning and Revising User Profiles: The Identification of Interesting Web Sites. Machine Learning 27(3), 313–331 (1997)CrossRefGoogle Scholar
  30. 30.
    Porter, M.: An Algorithm for Suffix Stripping. Program 14(3), 130–137 (1980)Google Scholar
  31. 31.
    Quinlan, J.: Induction of Decision Trees. Machine Learning 1, 81–106 (1986)Google Scholar
  32. 32.
    Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufman, San Francisco (1993)Google Scholar
  33. 33.
    Rocchio, J.: Relevance Feedback in Information Retrieval. In: Salton, G. (ed.) The SMART System: Experiments in Automatic Document Processing, pp. 313–323. Prentice Hall, Upper Saddle River (1971)Google Scholar
  34. 34.
    Salton, G.: Automatic Text Processing. Addison-Wesley, Reading (1989)Google Scholar
  35. 35.
    Schafer, B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative Filtering Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)Google Scholar
  36. 36.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)MATHGoogle Scholar
  37. 37.
    Widrow, A., Hoff, M.: Adaptive Switching Circuits. WESCON Convention Record 4, 96–104 (1960)Google Scholar
  38. 38.
    Yang, Y., Pedersen, J.: A Comparative Study on Feature Selection in Text Categorization. In: Proceedings of the Fourteenth International Conference on Machine Learning, Nashville, TN, pp. 412–420 (1997)Google Scholar
  39. 39.
    Yang, Y.: An Evaluation of Statistical Approaches to Text Categorization. Information Retrieval 1(1), 67–88 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Michael J. Pazzani
    • 1
  • Daniel Billsus
    • 2
  1. 1.Rutgers University, ASBIII, 3 Rutgers Plaza, New Brunswick, NJ 08901 
  2. 2.FX Palo Alto Laboratory, Inc., 3400 Hillview Ave, Bldg. 4, Palo Alto, CA 94304 

Personalised recommendations