Advertisement

User Models for Adaptive Hypermedia and Adaptive Educational Systems

  • Peter Brusilovsky
  • Eva Millán
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4321)

Abstract

One distinctive feature of any adaptive system is the user model that represents essential information about each user. This chapter complements other chapters of this book in reviewing user models and user modeling approaches applied in adaptive Web systems. The presentation is structured along three dimensions: what is being modeled, how it is modeled, and how the models are maintained. After a broad overview of the nature of the information presented in these various user models, the chapter focuses on two groups of approaches to user model representation and maintenance: the overlay approach to user model representation and the uncertainty-based approach to user modeling.

Keywords

User Modeling Cognitive Style User Interest User Knowledge Intelligent Tutoring System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, J.R., Corbett, A.T., Koedinger, K.R., Pelletier, R.: Cognitive tutors: Lessons learned. The Journal of the Learning Sciences 4(2), 167–207 (1995)CrossRefGoogle Scholar
  2. 2.
    Anderson, J.R., Lebiere, C.: Atomic Components of Thought. Lawrence Erlbaum Associates, Hillsdale (1998)Google Scholar
  3. 3.
    Ardissono, L., Console, L., Torre, I.: An adaptive system for the personalised access to news. AI Communications 14, 129–147 (2001)zbMATHGoogle Scholar
  4. 4.
    Ardissono, L., Goy, A.: Tailoring the interaction with users in Web stores. User Modeling and User Adapted Interaction 10(4), 251–303 (2000)CrossRefGoogle Scholar
  5. 5.
    Ardissono, L., Goy, A., Meo, R., Petrone, G., Console, L., Lesmo, L., Simone, C., Torasso, P.: A Configurable System for the Construction of Adaptive Virtual Stores. World Wide Web. 2(3), 143–159 (1999)CrossRefGoogle Scholar
  6. 6.
    Aroyo, L., Dicheva, D.A.: Concept-based approach to support learning in a Web-based support environment. In: Moore, J.D., Redfield, C.L., Johnson, W.L (eds.) Proc. of AI-ED’2001, pp. 1–12. IOS Press, Amsterdam (2001)Google Scholar
  7. 7.
    Arroyo, I., Woolf, B.P.: Inferring learning and attitudes from a Bayesian Network of log file data. In: Looi, C.-K., McCalla, G., Bredeweg, B., Breuker, J (eds.) Proc. of 12th International Conference on Artificial Intelligence in Education. AIED’2005, pp. 33–44. IOS Press, Amsterdam (2005)Google Scholar
  8. 8.
    Beaumont, I.: User modeling in the interactive anatomy tutoring system ANATOM-TUTOR. User Modeling and User-Adapted Interaction 4(1), 21–45 (1994)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Beck, J.: Engagement tracing: using response times to model student disengagement. In: Looi, C.-K., McCalla, G., Bredeweg, B., Breuker, J (eds.) Proc. of 12th International Conference on Artificial Intelligence in Education. AIED’2005, pp. 88–95. IOS Press, Amsterdam (2005)Google Scholar
  10. 10.
    Benyon, D., Murray, D.: Experience with adaptive interfaces. The Computer Journal 31(5), 465–473 (1988)CrossRefGoogle Scholar
  11. 11.
    Berti, S., Mori, G., Paternò, F., Santoro, C.: An environment for designing and developing multi-platform interactive applications. In: Ardissono, L., Goy, A. (eds.) Proc. of HCITALY’2003, pp. 7-16. University of Turin (2003)Google Scholar
  12. 12.
    Billsus, D., Pazzani, M.J.: A learning agent for wireless news access. In: Lieberman, H (ed.) Proc. of 2000 International Conference on Intelligent User Interfaces, pp. 94–97. ACM Press, New York (2000)Google Scholar
  13. 13.
    Bloom, B.S.: Taxonomy of Educational Objectives, Handbook I: The Cognitive Domain. David McKay Co Inc., New York (1956)Google Scholar
  14. 14.
    Boyle, C., Encarnacion, A.O.: MetaDoc: an adaptive hypertext reading system. User Modeling and User-Adapted Interaction 4(1), 1–19 (1994)CrossRefGoogle Scholar
  15. 15.
    Brady, A., Conlan, O., Wade, V.: Dynamic Composition and Personalization of PDA-based eLearning – Personalized mLearning. In: Nall, J., Robson, R. (eds.) Proc. of World Conference on E-Learning, E-Learn 2004, pp. 234-242. AACE (2004)Google Scholar
  16. 16.
    Brailsford, T.J., Stewart, C.D., Zakaria, M.R., Moore, A.: Autonavigation, links, and narrative in an adaptive Web-based integrated learning environment. In: Proc. of The 11th International World Wide Web Conference (2002)Google Scholar
  17. 17.
    Brajnik, G., Guida, G., Tasso, C.: User modeling in intelligent information retrieval. Information Processing and Management 23(4), 305–320 (1987)CrossRefGoogle Scholar
  18. 18.
    Brusilovsky, P.: A framework for intelligent knowledge sequencing and task sequencing. In: Frasson, C., McCalla, G.I., Gauthier, G (eds.) ITS 1992. LNCS, vol. 608, pp. 499–506. Springer, Heidelberg (1992)Google Scholar
  19. 19.
    Brusilovsky, P.: Adaptive hypermedia, an attempt to analyze and generalize. In: Brusilovsky, P., Kommers, P., Streitz, N.A (eds.) MHVR 1994. LNCS, vol. 1077, pp. 288–304. Springer, Heidelberg (1996)Google Scholar
  20. 20.
    Brusilovsky, P.: Developing Adaptive Educational Hypermedia Systems: From Design Models to Authoring Tools. In: Murray, T., Blessing, S., Ainsworth, S (eds.) Authoring Tools for Advanced Technology Learning Environments: Toward cost-effective adaptive, interactive, and intelligent educational software, pp. 377–409. Kluwer, Dordrecht (2003)Google Scholar
  21. 21.
    Brusilovsky, P.: Adaptive navigation support. In: Brusilovsky, P., Kobsa, A., Neidl, W (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 263–290. Springer, Heidelberg (2007)Google Scholar
  22. 22.
    Brusilovsky, P., Anderson, J.: ACT-R electronic bookshelf: An adaptive system for learning cognitive psychology on the Web. In: Maurer, H., Olson, R.G. (eds.) Proc. of WebNet’98, World Conference of the WWW, Internet, and Intranet, pp. 92-97. AACE (1998)Google Scholar
  23. 23.
    Brusilovsky, P., Cooper, D.W.: Domain, Task, and User Models for an Adaptive Hypermedia Performance Support System. In: Gil, Y., Leake, D.B (eds.) Proc. of 2002 International Conference on Intelligent User Interfaces, pp. 23–30. ACM Press, New York (2002)Google Scholar
  24. 24.
    Brusilovsky, P., Eklund, J., Schwarz, E.: Web-based education for all: A tool for developing adaptive courseware. In: Ashman, H., Thistewaite, P. (eds.) Proc. of Seventh International World Wide Web Conference, vol. 30, pp. 291–300. Elsevier Science B.V, Amsterdam (1998)Google Scholar
  25. 25.
    Brusilovsky, P., Henze, N.: Open corpus adaptive educational hypermedia. In: Brusilovsky, P., Kobsa, A., Neidl, W (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 671–696. Springer, Heidelberg (2007)Google Scholar
  26. 26.
    Brusilovsky, P., Schwarz, E., Weber, G.: ELM-ART: An intelligent tutoring system on World Wide Web. In: Lesgold, A., Frasson, C., Gauthier, G (eds.) ITS 1996. LNCS, vol. 1086, pp. 261–269. Springer, Heidelberg (1996)Google Scholar
  27. 27.
    Brusilovsky, P., Sosnovsky, S., Yudelson, M.: Ontology-based framework for user model interoperability in distributed learning environments. In: Richards, G. (ed.) Proc. of World Conference on E-Learning, E-Learn 2005, pp. 2851-2855. AACE (2005)Google Scholar
  28. 28.
    Bunt, A., Carenini, G., Conati, C.: Adaptive content presentation for the Web. In: Brusilovsky, P., Kobsa, A., Neidl, W (eds.) he Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 409–432. Springer, Heidelberg (2007)Google Scholar
  29. 29.
    Bunt, A., Conati, C.: Probabilistic Student Modelling to Improve Exploratory Behaviour. User. Modeling and User.-Adapted Interaction 13(3), 269–309 (2003)CrossRefGoogle Scholar
  30. 30.
    Carberry, S., de Rosis, F.: Proceedings of Workshop on Adapting the Interaction Style to Affective Factors hold in conjunction with User Modeling 2005, July 25, 2005, Edinburgh, UK (2005), Available online at http://www.di.uniba.it/intint/UM05/WS-UM05.html
  31. 31.
    Carmona, C., Millán, E., Perez de la Cruz, J.-L., Trella, M., Conejo, R.: Introducing Prerequisite Relations in a Multi-layered Bayesian Student Model. In: Ardissono, L., Brna, P., Mitrović, A (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 347–356. Springer, Heidelberg (2005)Google Scholar
  32. 32.
    Carro, R.M., Pulido, E., Rodríguez, P.: Dynamic generation of adaptive Internet-based courses. Journal of Network and Computer Applications 22(4), 249–257 (1999)CrossRefGoogle Scholar
  33. 33.
    Carver, C.A., Howard, R.A., Lavelle, E.: Enhancing student learning by incorporating student learning styles into adaptive hypermedia. In: Proc. of ED-MEDIA’96 - World Conference on Educational Multimedia and Hypermedia, pp. 118-123. AACE (1996)Google Scholar
  34. 34.
    Cawsey, A., Grasso, F., Paris, C.: Adaptive information for consumers of healthcare. In: Brusilovsky, P., Kobsa, A., Neidl, W (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 465–484. Springer, Heidelberg (2007)Google Scholar
  35. 35.
    Chen, S.Y., Macredie, R.D.: Cognitive styles and hypermedia navigation: Development of a learning model. Journal of the American Society for Information Science and Technology 53(1), 3–15 (2002)CrossRefGoogle Scholar
  36. 36.
    Cheverst, K., Davies, N., Mitchell, K., Smith, P.: Providing tailored (context-aware) information to city visitors. In: Brusilovsky, P., Stock, O., Strapparava, C (eds.) AH 2000. LNCS, vol. 1892, pp. 73–85. Springer, Heidelberg (2000)Google Scholar
  37. 37.
    Chin, D., Kobsa, A., Wahlster, W.: Modelling what the User Knows in UC. In: Loveland, D.W (ed.) User Models in Dialog Systems. Symbolic Computation Series, pp. 74–107. Springer, Berlin (1989)Google Scholar
  38. 38.
    Cocea, M., Weibelzahl, S.: Can log files analysis estimate learners’ level of motivation? In: Herder, E., Heckmann, D. (eds.) Proc. of 14th Workshop on Adaptivity and User Modeling in Interactive Systems, ABIS 2006, pp.32-35. University of Hildesheim (2006)Google Scholar
  39. 39.
    Collins, J.A., Greer, J.E., Huang, S.H.: Adaptive Assessment Using Granularity Hierarchies and Bayesian Nets. In: Lesgold, A., Frasson, C., Gauthier, G (eds.) ITS 1996. LNCS, vol. 1086, pp. 569–577. Springer, Heidelberg (1996)Google Scholar
  40. 40.
    Conati, C., Gertner, A., VanLehn, K.: Using Bayesian Networks to Manage Uncertainty in Student Modeling. User Modeling and User-Adapted Interaction 12(4), 371–417 (2002)zbMATHCrossRefGoogle Scholar
  41. 41.
    Conati, C., Larkin, J., VanLehn, K.: A Computer Framework to Support Self-explanation. In: du Bolay, B., Mizoguchi, R (eds.) Proc. of 8th World Conference on Artificial Intelligence in Education AIED’97, Knowledge and Media in Learning Systems, pp. 279–286. IOS Press, Amsterdam (1997)Google Scholar
  42. 42.
    Conati, C., Maclaren, H.: Data-Driven Refinement of a Probabilistic Model of User Affect. In: Ardissono, L., Brna, P., Mitrović, A (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 40–49. Springer, Heidelberg (2005)Google Scholar
  43. 43.
    Conlan, O., O’Keeffe, I., Tallon, S.: Combining adaptive hypermedia techniques and ontology reasoning to produce dynamic personalized news services. In: Wade, V., Ashman, H., Smyth, B (eds.) AH 2006. LNCS, vol. 4018, pp. 81–90. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  44. 44.
    Corbett, A., Anderson, J.: Student Modelling and Mastery Learning in a Computer-based Programming Tutor. In: Frasson, C., McCalla, G.I., Gauthier, G (eds.) ITS 1992. LNCS, vol. 608, pp. 413–420. Springer, Heidelberg (1992)Google Scholar
  45. 45.
    Corbett, A., Anderson, J.R., O’Brien, A.T.: Student Modeling in the ACT Programming Tutor. In: Cognitively Diagnostic Assessment, pp. 19–41. Erlbaum, Hillsdale (1995)Google Scholar
  46. 46.
    Cotter, P., Smyth, B.: WAP-ing the Web: Content personalization for WAP-enabled devices. In: Brusilovsky, P., Stock, O., Strapparava, C (eds.) AH 2000. LNCS, vol. 1892, pp. 98–108. Springer, Heidelberg (2000)Google Scholar
  47. 47.
    Dagger, D., Conlan, O., Wade, V.P.: An architecture for candidacy in adaptive eLearning systems to facilitate the reuse of learning Resources. In: Rossett, A. (ed.) Proc. of World Conference on E-Learning, E-Learn 2003, pp. 49-56. AACE (2003)Google Scholar
  48. 48.
    De Bra, P., Aerts, A., Rousseau, B.: Concept Relationship Types for AHA! 2.0. In: Driscoll, M., Reeves, T.C. (eds.) Proc. of World Conference on E-Learning, E-Learn 2002 pp. 1386-1389. AACE (2002)Google Scholar
  49. 49.
    De Bra, P., Aerts, A., Smits, D., Stash, N.: AHA! Version 2.0: More Adaptation Flexibility for Authors. In: Driscoll, M., Reeves, T.C. (eds.) Proc. of World Conference on E-Learning, E-Learn 2002, pp. 240-246. AACE (2002)Google Scholar
  50. 50.
    De Bra, P., Calvi, L.: AHA! An open Adaptive Hypermedia Architecture. The New Review of Hypermedia and Multimedia 4, 115–139 (1998)Google Scholar
  51. 51.
    De Bra, P., Ruiter, J.-P.: AHA! Adaptive hypermedia for all. In: Fowler, W., Hasebrook, J. (eds.) Proc. of WebNet’2001, World Conference of the WWW and Internet, pp. 262-268. AACE (2001)Google Scholar
  52. 52.
    De Bra, P.: Teaching Hypertext and Hypermedia through the Web. Journal of Universal Computer Science 2(12), 797–804 (1996)Google Scholar
  53. 53.
    de Rosis, F., De Carolis, B., Pizzutilo, S.: User tailored hypermedia explanations. In: Brusilovsky, P., Beaumont, I. (eds.) Proc. of Workshop Adaptive Hypertext and Hypermedia at Fourth International Conference on User Modeling (1994), http://wwwis.win.tue.nl/ah94/deRosis.html
  54. 54.
    Díaz, A., Gervás, P.: Personalisation in news delivery systems: Item summarization and multi-tier item selection using relevance feedback. Web Intelligence and Agent Systems 3(3), 135–154 (2005)Google Scholar
  55. 55.
    Dichev, C., Dicheva, D., Aroyo, L.: Using Topic Maps for Web-based Education. Advanced Technology for Learning 1(1), 1–7 (2004)CrossRefGoogle Scholar
  56. 56.
    Dolog, P., Henze, N., Nejdl, W., Sintek, M.: Personalization in distributed e-learning environments. In: Proc. of The Thirteenth International World Wide Web Conference, WWW 2004 (Alternate track papers and posters), pp. 161–169. ACM Press, New York (2004)Google Scholar
  57. 57.
    Dolog, P., Nejdl, W.: Semantic Web Technologies for the Adaptive Web. In: Brusilovsky, P., Kobsa, A., Neidl, W (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 697–719. Springer, Heidelberg (2007)Google Scholar
  58. 58.
    Dolog, P., Schäfer, M.: Learner Modeling on the Semantic Web. In: Proc. of PerSWeb’05, Workshop on Personalization on the Semantic Web at 10th International User Modeling Conference (2005), http://www.win.tue.nl/persweb/Camera-ready/6-Dolog-full.pdf
  59. 59.
    Dowling, C.E., Hockemeyer, C., Ludwig, A.H.: Adaptive Asessment and Training Using the Neighbourhood of Knowledge States. In: Lesgold, A., Frasson, C., Gauthier, G (eds.) ITS 1996. LNCS, vol. 1086, pp. 578–585. Springer, Heidelberg (1996)Google Scholar
  60. 60.
    Druzdzel, M., van der Gaag, L.C.: Building Probabilistic Networks: Where Do the Numbers Come From? - Guest editors’ introduction. IEEE Transactions on Knowledge and Data Engineering 12(4), 481–486 (2000)CrossRefGoogle Scholar
  61. 61.
    Dufresne, A., Turcotte, S.: Cognitive style and its implications for navigation strategies. In: du Boulay, B., Mizoguchi, R (eds.) Proc. of AI-ED’97, 8th World Conference on Artificial Intelligence in Education, pp. 287–293. IOS, Amsterdam (1997)Google Scholar
  62. 62.
    Eisenstein, J., Vanderdonckt, J., Puerta, A.: Applying model-based techniques to the development of UIs for mobile computers. In: Proc. of 6th International Conference on Intelligent User Interfaces, pp. 69–76. ACM Press, New York (2001)CrossRefGoogle Scholar
  63. 63.
    Encarnação, L.M.: Multi-level user support through adaptive hypermedia: A highly application-independent help component. In: Moore, J., Edmonds, E., Puerta, A (eds.) Proc. of 1997 International Conference on Intelligent User Interfaces, pp. 187–194. ACM Press, New York (1997)CrossRefGoogle Scholar
  64. 64.
    Felder, R.: Learning and teaching styles. Journal of Engineering Education 78(7), 674–681 (1988)Google Scholar
  65. 65.
    Fink, J., Kobsa, A., Nill, A.: Adaptable and adaptive information provision for all users, including disabled and elderly people. The New Review of Hypermedia and Multimedia 4, 163–188 (1998)Google Scholar
  66. 66.
    Fischer, G.: User modeling in human-computer interaction. User Modeling and User Adapted Interaction 11, 1–2 (2001)CrossRefGoogle Scholar
  67. 67.
    Ganeshan, R., Johnson, W., Shaw, E., Wood, B.P.: Tutoring Diagnostic Problem Solving. In: Gauthier, G., VanLehn, K., Frasson, C (eds.) ITS 2000. LNCS, vol. 1839, pp. 33–42. Springer, Heidelberg (2000)Google Scholar
  68. 68.
    García, F., Amandi, A., Schiaffinoa, S., Campoa, M.: Evaluating Bayesian networks’ precision for detecting students’ learning styles. Computers & Education (in press 2006)Google Scholar
  69. 69.
    Garlatti, S., Iksal, S.: Context filtering and spacial filtering in an adaptive information system. In: Brusilovsky, P., Stock, O., Strapparava, C (eds.) AH 2000. LNCS, vol. 1892, pp. 315–318. Springer, Heidelberg (2000)Google Scholar
  70. 70.
    Garlatti, S., Iksal, S., Kervella, P.: Adaptive on-line information system by means of a task model and spatial views. In: Brusilovsky, P., Bra, P.D. (eds.) Proc. of Second Workshop on Adaptive Systems and User Modeling on the World Wide Web, pp. 59-66 (1999), Also available at http://wwwis.win.tue.nl/asum99/garlatti/garlatti.html
  71. 71.
    Gates, K.F., Lawhead, P.B., Wilkins, D.E.: Toward an adaptive WWW: a case study in customized hypermedia. New. Review of Multimedia and Hypermedia 4, 89–113 (1998)Google Scholar
  72. 72.
    Gauch, S., Speretta, M., Chandramouli, A., Micarelli, A.: User profiles for personalized information access. In: Brusilovsky, P., Kobsa, A., Neidl, W (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 54–89. Springer, Heidelberg (2007)Google Scholar
  73. 73.
    Gilbert, J.E., Han, C.Y.: Arthur: Adapting Instruction to Accommodate Learning Style. In: Bra, P.D., Leggett, J. (eds.) Proc. of WebNet’99, World Conference of the WWW and Internet, pp. 433-438. AACE (1999)Google Scholar
  74. 74.
    Goldstein, I.P.: The genetic graph: a representation for the evolution of procedural knowledge. In: Sleeman, D.H., Brown, J.S (eds.) Intelligent tutoring systems, pp. 51–77. Academic press, London (1982)Google Scholar
  75. 75.
    Gonschorek, M., Herzog, C.: Using hypertext for an adaptive helpsystem in an intelligent tutoring system. In: Greer, J. (ed.) Proc. of AI-ED’95, 7th World Conference on Artificial Intelligence in Education pp. 274-281. AACE (1995)Google Scholar
  76. 76.
    Goodman, B.A., Litman, D.J.: On the interaction between plan recognition and intelligent interfaces. User Modeling and User-Adapted Interaction 2(1), 83–115 (1992)CrossRefGoogle Scholar
  77. 77.
    Goren-Bar, D., Graziola, I., Pianesi, F., Zancanaro, M.: The influence of personality factors on visitor attitudes towards adaptivity dimensions for mobile museum guides. User Modeling and User Adapted Interaction 16(1), 31–62 (2005)CrossRefGoogle Scholar
  78. 78.
    Grunst, G.: Adaptive hypermedia for support systems. In: Schneider-Hufschmidt, M., Kühme, T., Malinowski, U (eds.) Adaptive user interfaces: Principles and practice, pp. 269–283. North-Holland, Amsterdam (1993)Google Scholar
  79. 79.
    Heckerman, D.: A Tutorial on Learning with Bayesian Networks. Technical Report No. MSR-TR-95-06, Microsoft Research Advanced Technology Division (1995)Google Scholar
  80. 80.
    Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., von Wilamowitz-Moellendorff, M.: Gumo - The General User Model Ontology. In: Ardissono, L., Brna, P., Mitrović, A (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 428–432. Springer, Heidelberg (2005)Google Scholar
  81. 81.
    Henze, N., Naceur, K., Nejdl, W., Wolpers, M.: Adaptive hyperbooks for constructivist teaching. Künstliche Intelligenz 4, 26–31 (1999)Google Scholar
  82. 82.
    Henze, N., Nejdl, W.: Student modeling for KBS Hyperbook system using Bayesian networks, Technical report, University of Hannover (1999), available online at http://www.kbs.uni-hannover.de/paper/99/adaptivity.html
  83. 83.
    Henze, N., Nejdl, W.: Adaptation in open corpus hypermedia. International Journal of Artificial Intelligence in Education 12(4), 325–350 (2001)Google Scholar
  84. 84.
    Hirashima, T., Hachiya, K., Kashihara, A., Toyoda, J.I.: Information filtering using user’s context on browsing in hypertext. User Modeling and User Adapted Interaction 7(4), 239–256 (1997)CrossRefGoogle Scholar
  85. 85.
    Hirashima, T., Matsuda, N., Nomoto, T., Toyoda, J.I.: Context-sensitive filtering for browing in hypertext. In: Proc. of International Conference on Intelligent User Interfaces. IUI’98, pp. 21–28. ACM Press, New York (1998)Google Scholar
  86. 86.
    Hockemeyer, C., Held, T., Albert, D.: RATH - A relational adaptive tutoring hypertext WWW-environment based on knowledge space theory. In: Alvegård, C. (ed.) Proc. of CALISCE’98, 4th International conference on Computer Aided Learning and Instruction in Science and Engineering, pp. 417-423 (1998)Google Scholar
  87. 87.
    Hollink, V., Someren, M.V, Hage, S.T.: Discovering stages in web navigation. In: Ardissono, L., Brna, P., Mitrović, A (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 473–482. Springer, Heidelberg (2005)Google Scholar
  88. 88.
    Höök, K., Karlgren, J., Wærn, A., Dahlbäck, N., Jansson, C.G., Karlgren, K., Lemaire, B.: A glass box approach to adaptive hypermedia. User Modeling and User-Adapted Interaction 6(2-3), 157–184 (1996)CrossRefGoogle Scholar
  89. 89.
    Horvitz, E.J., Breese, J.S., Henrion, M.: Decision Theory in Expert Systems and Artificial Intelligence. International Journal of Approximate Reasoning 2, 247–302 (1988)CrossRefGoogle Scholar
  90. 90.
    Jameson, A.: Numerical Uncertainty Management in User and Student Modeling: An Overview of Systems and Issues. User Modeling and User-Adapted Interaction 5, 193–251 (1996)CrossRefGoogle Scholar
  91. 91.
    Jameson, A.: Modeling both the context and the user. Personal Technologies 5(1), 29–33 (2001)Google Scholar
  92. 92.
    Jameson, A., Smyth, B.: Recommendation to groups. In: Brusilovsky, P., Kobsa, A., Neidl, W (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 596–627. Springer, Heidelberg (2007)Google Scholar
  93. 93.
    Jantke, K.P., Memmel, M., Rostanin, O., Rudolf, B.: Media and service integration for professional e-learning. In: Nall, J., Robson, R. (eds.) Proc. of World Conference on E-Learning, E-Learn 2004, pp. 725-732. AACE (2004)Google Scholar
  94. 94.
    Jin, X., Zhou, Y., Mobasher, B.: Task-Oriented Web User Modeling for Recommendation. In: Ardissono, L., Brna, P., Mitrović, A (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 109–118. Springer, Heidelberg (2005)Google Scholar
  95. 95.
    Joerding, T.: A temporary user modeling approach for adaptive shopping on the Web. In: Brusilovsky, P., De Bra, P. (eds.) Proc. of Second Workshop on Adaptive Systems and User Modeling on the World Wide Web, pp. 75-79 (1999), Also available at http://wwwis.win.tue.nl/asum99/joerding/joerding.html
  96. 96.
    Jokela, S., Turnpeinen, M., Kurki, T., Savia, E., Sulonen, R.: The Role of Structured Content in a Personalised News Service. In: Proc. of 34th Hawaii International Conference on System Sciences, pp. 1-10 (2001)Google Scholar
  97. 97.
    Kaplan, C., Fenwick, J., Chen, J.: Adaptive hypertext navigation based on user goals and context. User Modeling and User-Adapted Interaction 3(3), 193–220 (1993)CrossRefGoogle Scholar
  98. 98.
    Katz, S., Lesgold, A., Eggan, G., Gordin, M.: Modelling the student in SHERLOCK II. In: Greer, J.E., McCalla, G. (eds.) Student Modelling: The Key to Individualized Knowledge-Based Instruction. Series F: Computer and Systems Sciences. NATO ASI Series, pp. 99–125. Springer, Heidelberg (1994)Google Scholar
  99. 99.
    Kavcic, A.: Fuzzy user modeling for adaptation in educational hypermedia. IEEE Transactions on Systems, Man, and Cybernetics 34(4), 439–449 (2004)CrossRefGoogle Scholar
  100. 100.
    Kawai, K., Mizoguchi, R., Kakusho, O., Toyoda, J.: A framework for ICAI systems based on inductive inference and logic programming. New Generation Computing 5, 115–129 (1987)Google Scholar
  101. 101.
    Kay, J.: Lies, damned lies and stereotypes: pragmatic approximations of users. In: Kobsa, A., Litman, D (eds.) Proc. of Fourth International Conference on User Modeling, pp. 175–184. MITRE, London (1994)Google Scholar
  102. 102.
    Kay, J., Kummerfeld, R.J.: An individualised course for the C programming language. In: Proc. of Second International WWW Conference (1994), http://www.cs.usyd.edu.au/~bob/kay-kummerfeld.html
  103. 103.
    Kay, J., Lum, A.: Ontologies for Scrutable Learner Modeling in Adaptive E-Learning. In: Aroyo, L., Tasso, C. (eds.) Proc. of Workshop on Application of Semantic Web Technologies for Adaptive Educational Hypermedia at the Third International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems, AH’2004, pp. 292-301. Technische University Eindhoven (2004)Google Scholar
  104. 104.
    Kim, K.S., Allen, B.: Cognitive and Task Influences on Web Searching Behavior. Journal of the American Society for Information Science and Technology 53(2), 109–119 (2002)CrossRefGoogle Scholar
  105. 105.
    Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Johan Hjelm, Butler, M.H., Tran, L.: Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies 1.0. W3C Recommendation 15 January 2004 (2004), http://www.w3.org/TR/CCPP-struct-vocab/
  106. 106.
    Koedinger, K.R., Anderson, J.R., Hadley, W.H., Mark, M.A.: Intelligent tutoring goes to school in the big city. International Journal of Artificial Intelligence in Education 8, 30–43 (1997)Google Scholar
  107. 107.
    Korfhage, R.R.: Information storage and retrieval. Wiley Computer Publishing, Chichester (1997)Google Scholar
  108. 108.
    Kosba, E., Dimitrova, V., Boyle, R.: Using Fuzzy Techniques to Model Students in Web-Based Learning Environments. International Journal of Artificial Intelligence Tools 13(2), 279–297 (2004)CrossRefGoogle Scholar
  109. 109.
    Krüger, A., Baus, J., Heckmann, D., Kruppa, M., Wasinger, R.: Adaptive mobile guides. In: Brusilovsky, P., Kobsa, A., Neidl, W (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 521–549. Springer, Heidelberg (2007)Google Scholar
  110. 110.
    Kumar, A.N.: A Scalable Solution for Adaptive Problem Sequencing and its Evaluation. In: Wade, V., Ashman, H., Smyth, B (eds.) AH 2006. LNCS, vol. 4018, pp. 161–171. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  111. 111.
    Laroussi, M., Benahmed, M.: Providing an adaptive learning through the Web case of CAMELEON: Computer Aided MEdium for LEarning on Networks. In: Alvegård, C. (ed.) Proc. of CALISCE’98, 4th International conference on Computer Aided Learning and Instruction in Science and Engineering, pp.411-416 (1998)Google Scholar
  112. 112.
    Lee, K.B., Grice, R.A: An Adaptive Viewing Application for the Web on Personal Digital Assistants. In: Proc. of ACM SIGDOC’03, pp. 125–132. IEEE, Los Alamitos (2003)Google Scholar
  113. 113.
    Liu, Y., Ginther, D.: Cognitive styles and distance education. Online Journal of Distance Learning Administration 2(3) (1999), http://www.westga.edu/~distance/liu23.html
  114. 114.
    Locke, J.: Microsoft Bayesian Networks. Basics of Knowledge Engineering. Microsoft Support Technology (1999), http://freelock.com/files/KE.pdf
  115. 115.
    Lopez, J.F., Szekely, P.: Web page adaptation for universal access. In: Stephanidis, C (ed.) Proc. of 1st International Conference on Universal Access in Human-Computer Interaction, pp. 690–694. Lawrence Erlbaum Associates, Hillsdale (2001)Google Scholar
  116. 116.
    López, J.M., Millán, E., Pérez-de-la-Cruz, J.-L., Triguero, F.: ILESA: a Web-based Intelligent Learning Environment for the Simplex Algorithm. In: Alvegård, C. (ed.) Proc. of CALISCE’98, 4th International conference on Computer Aided Learning and Instruction in Science and Engineering, pp. 399-406 (1998)Google Scholar
  117. 117.
    Lundgren-Cayrol, K., Paquette, G., Miara, A., Lundgren-Cayrol, K., Paquette, G., Miara, A., Bergeron, F., Rivard, J., Rosca, I.: Explor@ Advisory Agent: Tracing the Student’s Trail. In: Fowler, W., Hasebrook, J. (eds.) Proc. of WebNet’2001, World Conference of the WWW and Internet, pp. 802–808. AACE (2001) Google Scholar
  118. 118.
    Magnini, B., Strapparava, C.: Improving user modeling with content-based techniques. In: Bauer, M., Gmytrasiewicz, P.J., Vassileva, J (eds.) UM 2001. LNCS (LNAI), vol. 2109, pp. 74–83. Springer, Heidelberg (2001)Google Scholar
  119. 119.
    Manske, M., Conati, C.: Modelling Learning in an Educational Game. In: Proc. of 12th World Conference of Artificial Intelligence and Education. AIED’05, pp. 411–419. IOS Press, Amsterdam (2005)Google Scholar
  120. 120.
    Masthoff, J.: Towards an authoring coach for adaptive Web-based instruction. In: De Bra, P., Brusilovsky, P., Conejo, R (eds.) AH 2002. LNCS, vol. 2347, pp. 415–418. Springer, Heidelberg (2002)Google Scholar
  121. 121.
    Mathé, N., Chen, J.: User-centered indexing for adaptive information access. User Modeling and User-Adapted Interaction 6(2-3), 225–261 (1996)CrossRefGoogle Scholar
  122. 122.
    Mayo, M., Mitrovic, A.: Optimising ITS behaviour with Bayesian networks and decision theory. International Journal of Artificial Intelligence in Education 12, 124–153 (2001)Google Scholar
  123. 123.
    McArthur, D., Stasz, C., Hotta, J., Peter, O., Burdorf, C.: Skill-oriented task sequencing in an intelligent tutor for basic algebra. Instructional Science 17(4), 281–307 (1988)CrossRefGoogle Scholar
  124. 124.
    McCalla, G., Bunt, R.B., Harms, J.J.: The design of the SCENT automated advisor. Computational Intelligence 2(2), 76–91 (1986)CrossRefGoogle Scholar
  125. 125.
    Micarelli, A., Gasparetti, F., Sciarrone, F., Gauch, S.: Personalized search on the World Wide Web. In: Brusilovsky, P., Kobsa, A., Neidl, W (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 195–230. Springer, Heidelberg (2007)Google Scholar
  126. 126.
    Micarelli, A., Sciarrone, F.: A case-based system for adaptive hypermedia navigation. In: Smith, I., Faltings, B (eds.) Advances in Case-Based Reasoning. LNCS (LNAI), pp. 266–279. Springer, Berlin (1996)CrossRefGoogle Scholar
  127. 127.
    Micarelli, A., Sciarrone, F.: Anatomy and empirical evaluation of an adaptive Web-based information filtering system. User Modeling and User Adapted Interaction 14, 159–200 (2004)CrossRefGoogle Scholar
  128. 128.
    Middleton, S.E., Shadbolt, N.R., De Roure, D.C.: Ontological User Profiling in Recommender Systems. ACM Transactions on Information Systems 22(1), 54–88 (2004)CrossRefGoogle Scholar
  129. 129.
    Millán, E., Agosta, J.M., Perez de la Cruz, J.-L.: Bayesian Student Modelling and the Problem of Parameter Specification. British Journal of Educational Technology 32(2), 171–181 (2001)CrossRefGoogle Scholar
  130. 130.
    Millán, E., Perez de la Cruz, J.-L: A Bayesian Diagnostic Algorithm for Student Modeling. User Modeling and User-Adapted Interaction 12, 281–330 (2002)zbMATHCrossRefGoogle Scholar
  131. 131.
    Millán, E., Perez de la Cruz, J.-L., García, F.: Dynamic versus Static Student Models Based on Bayesian Networks: An Empirical Study. In: Palade, V., Howlett, R.J., Jain, L (eds.) KES 2003. LNCS, vol. 2774, pp. 1337–1344. Springer, Heidelberg (2003)Google Scholar
  132. 132.
    Mislevy, R., Gitomer, D.H.: The Role of Probability-Based Inference in an Intelligent Tutoring System. User Modeling and User-Adapted Interaction 5(3-4), 253–282 (1996)CrossRefGoogle Scholar
  133. 133.
    Mitchell, T., Chen, S.Y., Macredie, R.: Adapting Hypermedia to cognitive styles: Is it necessary? In: Proc. of Workshop on Individual Differences in Adaptive Hypermedia at the 3rd International Conference on Adaptive Hypermedia and Adaptive Web-based Systems (2004), http://www.dcs.bbk.ac.uk/~gmagoulas/AH2004_Workshop/Proceedings.htm
  134. 134.
    Mitrovic, A.: An Intellignet SQL Tutor on the Web. International Journal of Artificial Intelligence in Education 13(2-4), 173–197 (2003)Google Scholar
  135. 135.
    Mobasher, B.: Data mining for Web personalization. In: Brusilovsky, P., Kobsa, A., Neidl, W (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 90–135. Springer, Heidelberg (2007)Google Scholar
  136. 136.
    Muldner, K., Conati, C.: Using Similarity to Infer Meta-Cognitive Behaviours During Analogical Problem Solving. In: Ardissono, L., Brna, P., Mitrović, A (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 134–143. Springer, Heidelberg (2005)Google Scholar
  137. 137.
    Müller, C., Großmann-Hutter, B., Jameson, A., Rummer, R., Wittig, F.: Recognizing time pressure and cognitive load on the basis of speech: An Experimental study. In: Bauer, M., Gmytrasiewicz, P.J., Vassileva, J (eds.) UM 2001. LNCS (LNAI), vol. 2109, pp. 24–33. Springer, Heidelberg (2001)Google Scholar
  138. 138.
    Murray, R.C., VanLehn, K., Mostow, J.: Looking ahead to select tutorial actions: A decision-theoretic approach. International Journal of Artificial Intelligence in Education 14(3-4), 235–279 (2004)Google Scholar
  139. 139.
    Murray, W.: An Easily Implemented, Linear-time Algorithm for Bayesian Student Modeling in Multi-level Trees. In: Lajoie, S., Vivet, M (eds.) Proc. of 9th World Conference of Artificial Intelligence and Education. AIED’99, pp. 413–420. IOS Press, Amsterdam (1999)Google Scholar
  140. 140.
    Neapolitan, R.: Probabilistic Reasoning in Expert Systems: Theory and Algorithms. John Wiley & Sons, New York (1990)Google Scholar
  141. 141.
    Neumann, G., Zirvas, J.: SKILL - A scallable internet-based teaching and learning system. In: Maurer, H., Olson, R.G. (eds.) Proc. of WebNet’98, World Conference of the WWW, Internet, and Intranet, pp. 688–693. AACE (1998)Google Scholar
  142. 142.
    Not, E., Petrelli, D., Sarini, M., Stock, O., Strapparava, C., Zancanaro, M.: Hypernavigation in the physical space: adapting presentation to the user and to the situational context. New Review of Multimedia and Hypermedia 4, 33–45 (1998)Google Scholar
  143. 143.
    Oberlander, J., O’Donell, M., Mellish, C., Knott, A.: Conversation in the museum: experiments in dynamic hypermedia with the intelligent labeling explorer. The New Review of Multimedia and Hypermedia 4, 11–32 (1998)Google Scholar
  144. 144.
    Ohlsson, S.: Constraint-based student modeling. Journal of Artificial Intelligence in Education 3(4), 429–447 (1992)Google Scholar
  145. 145.
    Okazaki, Y., Watanabe, K., Kondo, H.: An Implementation of the WWW Based ITS for Guiding Differential Calculations. In: Brusilovsky, P., Nakabayashi, K., Ritter, S. (eds.) Proc. of Workshop Intelligent Educational Systems on the World Wide Web at 8th World Conference on Artificial Intelligence in Education, pp. 18–25 (1997), Also available at http://www.contrib.andrew.cmu.edu/~plb/AIED97_workshop/Okazaki/Okazaki.html
  146. 146.
    Ong, E., Tay, A.-H., Ong, C.-K., Chan, S.-K.: Personalising Information Assets in Collaborative Learning Environments. In: Looi, C.-K., McCalla, G., Bredeweg, B., Breuker, J. (eds.) Proc. of 12th International Conference on Artificial Intelligence in Education. AIED’2005, pp. 523–530. IOS Press, Amsterdam (2005)Google Scholar
  147. 147.
    Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions. Cambridge University Press, Cambridge (1988)Google Scholar
  148. 148.
    Papanikolaou, K.A., Grigoriadou, M., Kornilakis, H., Magoulas, G.D.: Personalising the interaction in a Web-based Educational Hypermedia System: the case of INSPIRE. User Modeling and User Adapted Interaction 13(3), 213–267 (2003)CrossRefGoogle Scholar
  149. 149.
    Paris, C., Wan, S., Wilkinson, R., Wu, M.: Generating personal travel guides - and who wants them? In: Bauer, M., Gmytrasiewicz, P.J., Vassileva, J. (eds.) UM 2001. LNCS (LNAI), vol. 2109, pp. 251–253. Springer, Heidelberg (2001)Google Scholar
  150. 150.
    Pask, G.: A fresh look at cognition and the individual. International Journal on the Man-Machine Studies 4, 211–216 (1972)Google Scholar
  151. 151.
    Paternò, F., Paganelli, L.: Intelligent analysis of user interactions with Web applications. In: Gil, Y., Leake, D.B. (eds.) Proc. of 2002 International Conference on Intelligent User Interfaces, pp. 111–118. ACM Press, New York (2002)Google Scholar
  152. 152.
    Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Neidl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007)Google Scholar
  153. 153.
    Pearl, J.: Probabilistic Reasoning in Expert Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)Google Scholar
  154. 154.
    Pentland, A.: Socially Aware Computation and Communication. Computer 38(3), 33–40 (2005)CrossRefGoogle Scholar
  155. 155.
    Pérez, T., Gutiérrez, J., Lopistéguy, P.: An adaptive hypermedia system. In: Greer, J. (ed.) Proc. of AI-ED’95, 7th World Conference on Artificial Intelligence in Education, pp. 351–358. AACE (1995)Google Scholar
  156. 156.
    Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)Google Scholar
  157. 157.
    Durm, R.V., Duval, E., Olivié, H., Pilar da Silva, D.: Concepts and documents for adaptive educational hypermedia: a model and a prototype. In: Brusilovsky, P., De Bra, P. (eds.) Proc. of Second Adaptive Hypertext and Hypermedia Workshop at the Ninth ACM International Hypertext Conference Hypertext’98, pp. 35–43. Eindhoven University of Technology (1998), also available as http://wwwis.win.tue.nl/ah98/Pilar/Pilar.html
  158. 158.
    Polson, M.C., Richardson, J.J. (eds.): Foundations of intelligent tutoring systems. Lawrence Erlbaum Associates, Hillsdale (1988)Google Scholar
  159. 159.
    Prendinger, H., Mori, J., Ishizuka, M.: Recognizing, modeling, and responding to user affective states. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 60–69. Springer, Heidelberg (2005)Google Scholar
  160. 160.
    Prentzas, J., Hatzilygeroudis, I., Garofalakis, J.: A Web-based intelligent tutoring systems using hybrid rules as its representation basis. In: Cerri, S.A., Gouardéres, G., Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, pp. 119–128. Springer, Heidelberg (2002)Google Scholar
  161. 161.
    Read, T., Bárcena, E., Barros, B., Verdejo, F.: I-PETER: Modelling Personalised Diagnosis and Material Selection for an Online English Course. In: Garijo, F.J., Riquelme, J.-C., Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI), vol. 2527, pp. 734–744. Springer, Heidelberg (2002)Google Scholar
  162. 162.
    Reye, J.: Two-phase Updating of Student Models Based on Dynamic Belief Networks. In: Goettl, B.P., Halff, H.M., Redfield, C.L., Shute, V.J. (eds.) ITS 1998. LNCS, vol. 1452, pp. 6–15. Springer, Heidelberg (1998)Google Scholar
  163. 163.
    Rich, E.: Building and Exploiting User Models. In: Proc. of Sixth International Joint Conference on Artificial Intelligence, pp. 720–722 (1979)Google Scholar
  164. 164.
    Rich, E.A.: Stereotypes and user modeling. In: Kobsa, A., Wahlster, W. (eds.) User models in dialog systems, vol. 18, pp. 35–51. Springer, Berlin (1989)Google Scholar
  165. 165.
    Riding, R., Rayner, S.: Cognitive Styles and Learning Strategies: Understanding Style Differences in Learning and Behavior. David Fulton Publisher, London (1998)Google Scholar
  166. 166.
    Rist, T.: A perspective on intelligent information interfaces for mobile users. In: Smith, M., Salvendy, G., Harris, D., Koubek, R.J. (eds.) Proc. of 9th International Conference on Human-Computer Interaction. HCI International’2001, vol. 1, pp. 154–158. Lawrence Erlbaum Associates, Mahwah (2001)Google Scholar
  167. 167.
    Ritter, S.: PAT Online: A Model-tracing tutor on the World-wide Web. In: Brusilovsky, P., Nakabayashi, K., Ritter, S. (eds.) Proc. of Workshop “Intelligent Educational Systems on the World Wide Web” at AI-ED’97, 8th World Conference on Artificial Intelligence in Education, pp. 11–17. ISIR (1997), also available at http://www.contrib.andrew.cmu.edu/ ~plb/AIED97_workshop/Ritter/Ritter.html
  168. 168.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  169. 169.
    Sanrach, C., Grandbastien, M.: ECSAIWeb: A Web-based authoring system to create adaptive learning systems. In: Brusilovsky, P., Stock, O., Strapparava, C. (eds.) AH 2000. LNCS, vol. 1892, pp. 214–226. Springer, Heidelberg (2000)Google Scholar
  170. 170.
    Santos, J.E., Nguyen, H., Zhao, Q., Wang, H.: User modeling for intent prediction in information analysis. In: Proc. of 47th Annual Meeting for the Human Factors and Ergonomics Society, 3rd edn. HFES-03, pp. 1034–1038 (2003)Google Scholar
  171. 171.
    Sarini, M., Strapparava, C.: Building a User Model for a Museum Exploration and Information-Providing Adaptive System. In: Brusilovsky, P., De Bra, P. (eds.) Proc. of Second Adaptive Hypertext and Hypermedia Workshop at the Ninth ACM International Hypertext Conference Hypertext’98, pp. 63-68 (1998), Also available at http://wwwis.win.tue.nl/ah98/Sarini/Sarini.html
  172. 172.
    Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Neidl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)Google Scholar
  173. 173.
    Schmidt, A., Beigl, M., Gellersen, H.-W.: There is more to context than location. Computers and Graphics 23(6), 893–901 (1999)CrossRefGoogle Scholar
  174. 174.
    Schneider-Hufschmidt, M., Kühme, T., Malinowski, U. (eds.): Adaptive user interfaces: Principles and practice. Human Factors in Information Technology. North-Holland, Amsterdam (1993)Google Scholar
  175. 175.
    Sleeman, D.H.: UMFE: a user modeling front end system. International Journal on the Man-Machine Studies 23, 71–88 (1985)MathSciNetCrossRefGoogle Scholar
  176. 176.
    Sosnovsky, S., Brusilovsky, P.: Layered Evaluation of Topic-Based Adaptation to Student Knowledge. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 47–56. Springer, Heidelberg (2005)Google Scholar
  177. 177.
    Specht, M., Klemke, R.: ALE - Adaptive Learning Environment. In: Fowler, W., Hasebrook, J. (eds.) Proc. of WebNet’2001, World Conference of the WWW and Internet, pp. 1155–1160. AACE (2001)Google Scholar
  178. 178.
    Specht, M., Kobsa, A.: Interaction of domain expertise and interface design in adaptive educational hypermedia. In: Brusilovsky, P., De Bra, P. (eds.) Proc. of Second Workshop on Adaptive Systems and User Modeling on the World Wide Web, pp. 89-93 (1999)Google Scholar
  179. 179.
    Specht, M., Oppermann, R.: ACE - Adaptive Courseware Environment. The New Review of Hypermedia and Multimedia 4, 141–161 (1998)Google Scholar
  180. 180.
    Stacey, K.P., Sonenberg, L., Nicholson, A., Boneh, T., Steinle, V.: A Teaching Model Exploiting Cognitive Conflict Driven by a Bayesian Network. In: Brusilovsky, P., Corbett, A.T., de Rosis, F (eds.) UM 2003. LNCS, vol. 2702, pp. 352–362. Springer, Heidelberg (2003)Google Scholar
  181. 181.
    Stash, N., Cristea, A., De Bra, P.: Authoring of learning styles in adaptive hypermedia: Problems and solutions. In: Proc. of The 13th International World Wide Web Conference (Alternate track papers and posters), pp. 114–123. ACM Press, New York (2004)CrossRefGoogle Scholar
  182. 182.
    Stathacopoulou, S., Magoulas, G., Grigoriadou, M., Samarakou, M.: Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis. Information Sciences 170(2-4), 273–307 (2005)CrossRefGoogle Scholar
  183. 183.
    Steinacker, A., Faatz, A., Seeberg, C., Rimac, I., Hörmann, S., Saddik, A.E., Steinmetz, R.: MediBook: Combining semantic networks with metadata for learning resources to build a Web based learning system. In: Proc. of ED-MEDIA’2001 - World Conference on Educational Multimedia, Hypermedia and Telecommunications, pp. 1790-1795. AACE (2001)Google Scholar
  184. 184.
    Steinacker, A., Seeberg, C., Rechenberger, K., Fischer, S., Steinmetz, R.: Dynamically generated tables of contents as guided tours in adaptive hypermedia systems. In: Kommers, P., Richards, G. (eds.) Proc. of ED-MEDIA/ED-TELECOM’99 - 11th World Conference on Educational Multimedia and Hypermedia and World Conference on Educational Telecommunications, pp. 640-645. AACE (1999)Google Scholar
  185. 185.
    Stojanovic, L., Staab, S., Studer, R.: eLearning based on the Semantic Web. In: Fowler, W., Hasebrook, J. (eds.) Proc. of WebNet’2001, World Conference of the WWW and Internet, pp. 1774-1783. AACE (2001)Google Scholar
  186. 186.
    Suebnukarn, S., Haddawy, P.: Modeling Individual and Collaborative Problem Solving in Medical Problem-Based Learning. In: Ardissono, L., Brna, P., Mitrović, A (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 377–386. Springer, Heidelberg (2005)Google Scholar
  187. 187.
    Tanudjaja, F., Mui, L.: Persona: A contextualized and personalized Web search. In: Proc. of 35th Hawaii International Conference on System Sciences, pp. 1232–1240. IEEE, Los Alamitos (2002)CrossRefGoogle Scholar
  188. 188.
    Tarpin-Bernard, F., Habieb-Mammar, H.: Modeling elementary cognitive abilities for adaptive hypermedia presentation. User Modeling and User Adapted Interaction 15(5), 459–495 (2005)CrossRefGoogle Scholar
  189. 189.
    Trella, M., Carmona, C., Conejo, R.: MEDEA: an Open Service-Based Learning Platform for Developing Intelligent Educational Systems for the Web. In: Proc. of Workshop on Adaptive Systems for Web-based Education at 12th International Conference on Artificial Intelligence in Education. AIED’2005, pp. 27–34. IOS Press, Amsterdam (2005)Google Scholar
  190. 190.
    Triantafillou, E., Pomportis, A., Demetriadis, S.: The design and the formative evaluation of an adaptive educational system based on cognitive styles. Computers and Education 41, 87–103 (2003)CrossRefGoogle Scholar
  191. 191.
    Triantafillou, E., Pomportis, A., Demetriadis, S., Georgiadou, E.: The value of adaptivity based on cognitive style: an empirical study. British Journal of Educational Technology 35(1), 95–106 (2004)CrossRefGoogle Scholar
  192. 192.
    Tsiriga, V., Virvou, M.: Modelling the Student to Individualise Tutoring in a Web-Based ICALL. International Journal of Continuing Engineering Education and Lifelong Learning 13(3-4), 350–365 (2003)Google Scholar
  193. 193.
    Ueno, M.: Intelligent LMS with an agent that learns from log data. In: Richards, G. (ed.) Proc. of World Conference on E-Learning, E-Learn 2005, pp. 2068-2074. AACE (2005)Google Scholar
  194. 194.
    VanLehn, K.: Student models. In: Polson, M.C., Richardson, J.J (eds.) Foundations of intelligent tutoring systems, pp. 55–78. Lawrence Erlbaum Associates, Hillsdale (1988)Google Scholar
  195. 195.
    VanLehn, K., Martin, J.: Evaluation of an assessment system based on Bayesian Student Modeling. International Journal of Artificial Intelligence in Education 8(2), 179–221 (1998)Google Scholar
  196. 196.
    VanLehn, K., Niu, Z., Siler, S., Gertner, A.S.: Student Modeling from Conventional Test Data: A Bayesian Approach Without Priors. In: Goettl, B.P., Halff, H.M., Redfield, C.L., Shute, V.J (eds.) ITS 1998. LNCS, vol. 1452, pp. 434–443. Springer, Heidelberg (1998)Google Scholar
  197. 197.
    Vassileva, J.: An architecture and methodology for creating a domain-independent, plan-based intelligent tutoring system. Educational and Training Technology International 27(4), 386–397 (1990)Google Scholar
  198. 198.
    Vassileva, J.: A task-centered approach for user modeling in a hypermedia office documentation system. User Modeling and User-Adapted Interaction 6(2-3), 185–224 (1996)CrossRefGoogle Scholar
  199. 199.
    Vassileva, J.: DCG + GTE: Dynamic Courseware Generation with Teaching Expertise. Instructional Science 26(3-4), 317–332 (1998)CrossRefGoogle Scholar
  200. 200.
    Vassileva, J., McCalla, G., Greer, J.: Multi-Agent Multi-User Modeling in I-Help. User Modeling and User-Adapted Interaction 12, 179–210 (2003)CrossRefGoogle Scholar
  201. 201.
    Vomlel, J.: Bayesian Networks in Educational Testing. International Journal of Uncertainty, Fuzziness and Knowledge-Based System 12, 83–100 (2004)zbMATHCrossRefGoogle Scholar
  202. 202.
    W3C: Device Independence: Access to a Unified Web from Any Device in Any Context by Anyone. World Wide Web Consortium (2006), http://www.w3.org/2001/di/
  203. 203.
    Weber, G., Brusilovsky, P.: ELM-ART: An adaptive versatile system for Web-based instruction. International Journal of Artificial Intelligence in Education 12(4), 351–384 (2001)Google Scholar
  204. 204.
    Weber, G., Kuhl, H.-C., Weibelzahl, S.: Developing adaptive internet based courses with the authoring system NetCoach. In: Bra, P.D., Brusilovsky, P., Kobsa, A. (eds.) Proc. of Third workshop on Adaptive Hypertext and Hypermedia, pp. 35-48 (2001), Also available at http://wwwis.win.tue.nl/ah2001/papers/GWeber-UM01.pdf
  205. 205.
    Witkin, H.A., Moore, C.A., Goodenough, D.R., Cox, P.W.: Field-dependent and field-independent cognitive styles and their educational implications. Review of Educational Research 47(1), 1–64 (1977)CrossRefGoogle Scholar
  206. 206.
    Yin, X., Lee, W.S., Tan, Z.: Personalization of Web Content for Wireless Mobile Device. In: Proc. of Wireless Communications and Networking Conference, pp. 2569–2574. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  207. 207.
    Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)zbMATHMathSciNetCrossRefGoogle Scholar
  208. 208.
    Zapata-Rivera, D., Greer, J.: SModel Server: Student Modelling in Distributed Multi-Agent Tutoring Systems. In: Moore, J.D (ed.) Proc. of 9th World Conference of Artificial Intelligence and Education. AIED’99, pp. 446–455. IOS Press, Amsterdam (2001)Google Scholar
  209. 209.
    Zapata-Rivera, D., Greer, J.: Inspectable Bayesian student modelling servers in multi-agent tutoring systems. International Journal of Human-Computer Studies 61, 535–563 (2004)CrossRefGoogle Scholar
  210. 210.
    Zimmermann, A., Specht, M., Lorenz, A.: Personalization and Context Management. User Modeling and User-Adapted Interaction 15(3-4), 275–302 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Peter Brusilovsky
    • 1
  • Eva Millán
    • 2
  1. 1.School of Information Sciences, University of Pittsburgh, Pittsburgh PA 15260USA
  2. 2.ETSI Informática, University of Malaga 

Personalised recommendations