Web Service Discovery Based on Past User Experience

  • Natallia Kokash
  • Aliaksandr Birukou
  • Vincenzo D’Andrea
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4439)


Web service technology provides a way for simplifying interoperability among different organizations. A piece of functionality available as a web service can be involved in a new business process. Given the steadily growing number of available web services, it is hard for developers to find services appropriate for their needs. The main research efforts in this area are oriented on developing a mechanism for semantic web service description and matching. In this paper, we present an alternative approach for supporting users in web service discovery. Our system implements the implicit culture approach for recommending web services to developers based on the history of decisions made by other developers with similar needs. We explain the main ideas underlying our approach and report on experimental results.


Web Service Discovery Recommendation Systems Implicit Culture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akkiraju, R., et al.: Web service semantics - WSDL-S (2005), available at
  2. 2.
    Keller, U., Lara, R., Polleres, A.: WSMO web service discovery. WSMO working draft (2004), available at
  3. 3.
    Martin, D., et al.: et al.: OWL-S: Semantic markup for web services. W3C member submission (2004), available at
  4. 4.
    Piccinelli, G., Stefanelli, C., Trastour, D.: Trusted mediation for e-service provision in electronic marketplaces. In: Fiege, L., Mühl, G., Wilhelm, U.G. (eds.) WELCOM 2001. LNCS, vol. 2232, pp. 39–50. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Mahbub, K., Spanoudakis, G.: A framework for requirements monitoring of service based systems. In: Proceedings of the International Conference on Service-Oriented Computing (ICSOC), pp. 84–93. ACM Press, New York (2004)CrossRefGoogle Scholar
  6. 6.
    Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining collaborative filtering recommendations. In: Proceedings of ACM Conference on Computer Supported Cooperative Work, pp. 241–250. ACM Press, New York (2000)CrossRefGoogle Scholar
  7. 7.
    Maximilien, E.M., Singh, M.P.: Conceptual model of web service reputation. SIGMOD Record 31(4), 36–41 (2002)CrossRefGoogle Scholar
  8. 8.
    Blanzieri, E., et al.: Implicit culture for multi-agent interaction support. In: Batini, C., et al. (eds.) CoopIS 2001. LNCS, vol. 2172, pp. 27–39. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Birukou, A., et al.: IC-Service: A service-oriented approach to the development of recommendation systems. In: Proceedings of ACM Symposium on Applied Computing. Special Track on Web Technologies, ACM Press, New York (2007)Google Scholar
  10. 10.
    Garofalakis, J., et al.: Web service discovery mechanisms: Looking for a needle in a haystack? In: International Workshop on Web Engineering (2004)Google Scholar
  11. 11.
    Tian, M., et al.: Efficient selection and monitoring of QoS-aware web services with the WS-QoS framework. In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, pp. 152–158. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  12. 12.
    Bostrom, G., Giambiagi, P., Olsson, T.: Quality of service evaluation in virtual organizations using SLAs. In: International Workshop on Interoperability Solutions to Trust, Security, Policies and QoS for Enhanced Enterprise Systems (IS-TSPQ) (2006)Google Scholar
  13. 13.
    Dan, A., Davis, D., R.,: Web services on demand: WSLA-driven automated management. IBM Systems Journal 43(1), 136–158 (2004)CrossRefGoogle Scholar
  14. 14.
    Kokash, N., van den Heuvel, W.J., D’Andrea, V.: Leveraging web services discovery with customizable hybrid matching. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 522–528. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Baldi, P., Frasconi, P., Smyth, P.: Modeling the Internet and the Web: Probabilistic Methods and Algorithms. Wiley, Chichester (2003)Google Scholar
  16. 16.
    Kerrigan, M.: Web service selection mechanisms in the web service execution environment (WSMX). In: Proceedings of the ACM Symposium on Applied Computing (SAC), pp. 1664–1668. ACM Press, New York (2006)Google Scholar
  17. 17.
    Sherchan, W., Loke, S.W., Krishnaswamy, S.: A fuzzy model for reasoning about reputation in web services. In: Proceedings of ACM Symposium on Applied Computing, p. 1886. ACM Press, New York (2006)Google Scholar
  18. 18.
    Manikrao, U.S., Prabhakar, T.V.: Dynamic selection of web services with recommendation system. In: Proceedings of the International Conference on Next Generation Web Services Practices (NWESP), p. 117. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  19. 19.
    Claypool, M., et al.: Implicit interest indicators. In: International Conference on Intelligent User Interfaces, pp. 33–40. ACM Press, New York (2001)CrossRefGoogle Scholar
  20. 20.
    Maximilien, E.M., Singh, M.P.: A framework and ontology for dynamic web services selection. IEEE Internet Computing 8(5), 84–93 (2004)CrossRefGoogle Scholar
  21. 21.
    Wang, H., et al.: Multiagent system for reputation–based web services selection. In: International Conference on Quality Software (QSIC), pp. 429–434. IEEE Computer Society Press, Los Alamitos (2006)CrossRefGoogle Scholar
  22. 22.
    Xu, P., Gao, J., Guo, H.: Rating reputation: A necessary consideration in reputation mechanism. In: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  23. 23.
    Casati, F., et al.: Probabilistic, context-sensitive, and goal-oriented service selection. In: Proceedings of the Internationa Conference on Service-Oriented Computing (ICSOC), pp. 316–321. ACM Press, New York (2004)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Natallia Kokash
    • 1
  • Aliaksandr Birukou
    • 1
  • Vincenzo D’Andrea
    • 1
  1. 1.DIT - University of Trento, Via Sommarive, 14, 38050 TrentoItaly

Personalised recommendations