Extending the Calculus of Looping Sequences to Model Protein Interaction at the Domain Level

  • Roberto Barbuti
  • Andrea Maggiolo–Schettini
  • Paolo Milazzo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4463)


In previous papers we introduced a formalism, called Calculus of Looping Sequences (CLS), for describing biological systems and their evolution. CLS is based on term rewriting. Terms can be constructed by composing symbols of a given alphabet in sequences, which could be closed (looping) and contain other terms. In this paper we extend CLS to represent protein interaction at the domain level. Such an extension, called Calculus of Linked Looping Sequences (LCLS), is obtained by labeling alphabet symbols used in terms. Two symbols with the same label are considered to be linked. We introduce a type system to express a concept of well–formedness of LCLS terms, we give an operational semantics of the new calculus, and we show the application of LCLS to the description of a biological system.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., et al.: Hybrid Modeling and Simulation of Biomolecular Networks. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 19–32. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Barbuti, R., et al.: A Calculus of Looping Sequences for Modelling Microbiological Systems. Fundamenta Informaticae 72(1-3), 21–35 (2006)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Barbuti, R., et al.: Bisimulation Congruences in the Calculus of Looping Sequences. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 93–107. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Cardelli, L.: Brane Calculi. Interactions of Biological Membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–280. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Danos, V., Laneve, C.: Formal Molecular Biology. Theoretical Computer Science 325(1), 69–110 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Laneve, C., Tarissan, F.: A Simple Calculus for Proteins and Cells. In: Proc. of MeCBIC’06, ENTCS, to appear.Google Scholar
  7. 7.
    Milazzo, P.: Qualitative and Quantitative Formal Modeling of Biological Systems. PhD Thesis, University of Pisa (2007)Google Scholar
  8. 8.
    Matsuno, H., et al.: Hybrid Petri Net Representation of Gene Regulatory Network. In: Proc. of PSB’00, pp. 341–352. World Scientific Press, Singapore (2000)Google Scholar
  9. 9.
    Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)Google Scholar
  10. 10.
    Regev, A., et al.: BioAmbients: An Abstraction for Biological Compartments. Theoretical Computer Science 325(1), 141–167 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Regev, A., Silverman, W., Shapiro, E.Y.: Representation and Simulation of Biochemical Processes Using the Pi-Calculus Process Algebra. In: Proc. of PSB’01, pp. 459–470. World Scientific Press, Singapore (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Roberto Barbuti
    • 1
  • Andrea Maggiolo–Schettini
    • 1
  • Paolo Milazzo
    • 1
  1. 1.Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127 - PisaItaly

Personalised recommendations