Enhanced Prediction of Cleavage in Bovine Precursor Sequences

  • Allison N. Tegge
  • Sandra L. Rodriguez-Zas
  • J. V. Sweedler
  • Bruce R. Southey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4463)


Neuropeptides are important signaling molecules that influence a wide variety of biological processes. The prediction of neuropeptides from precursor proteins is difficult due to the numerous and complex series of enzymatic processing and posttranslational modification steps. Bioinformatics prediction of cleavage sites using statistical models was used to overcome the challenge of identifying neuropeptides. Binary logistic models were trained on a bovine dataset and validated on a mammalian dataset that contained no bovine precursors. A model that incorporated amino acid locations and properties provided more accurate and precise cleavage predictions than one using amino acid locations alone. All models consistently resulted in highly accurate predictions of cleavage sites in both datasets. The logistic model proposed can accurately predict cleavage sites in mammalian species and minimize the time consuming and costly experimental validation of neuropeptides.


Neuropeptide precursor cleavage logistic regression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fricker, L.D.: Neuropeptide-processing enzymes: applications for drug discovery. AAPS J. 7, E449–455 (2005)Google Scholar
  2. 2.
    Hummon, A.B., et al.: From precursor to final peptides: a statistical sequence-based approach to predicting prohormone processing. J. Proteome Res. 2, 650–656 (2003)CrossRefGoogle Scholar
  3. 3.
    Southey, B.R., Rodriguez-Zas, S.L., Sweedler, J.V.: Prediction of neuropeptide prohormone cleavages with application to RFamides. Peptides 27, 1087–1098 (2006)CrossRefGoogle Scholar
  4. 4.
    Amare, A., et al.: Bridging neuropeptidomics and genomics with bioinformatics: prediction of mammalian neuropeptide prohormone processing. J. Proteome Res. 5, 1162–1167 (2006)CrossRefGoogle Scholar
  5. 5.
    Southey, B.R., et al.: Prediction of neuropeptide cleavage sites in insects. Mol. Cell Proteomics (submitted) (2007)Google Scholar
  6. 6.
    Southey, B.R., et al.: NeuroPred: a tool to predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides. Nucleic Acids Res. 34(Web Server issue), W267–272 (2006)Google Scholar
  7. 7.
    Schechter, I., Berger, A.: On the size of the active site in proteases. Biochem. Biophys. Res. Commun. 27(2), 157–162 (1967)CrossRefGoogle Scholar
  8. 8.
    Berg, J.M., Tymoczko, J.L., Stryer, L.: Biochemistry, 5th edn. W.H. Freeman and Company, New York (2002)Google Scholar
  9. 9.
    Bendtsen, J.D., et al.: Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795 (2004)CrossRefGoogle Scholar
  10. 10.
    Agresti, A.: An Introduction to Categorical Data Analysis. John Wiley and Sons, New York (1996)zbMATHGoogle Scholar
  11. 11.
    Duckert, P., Brunak, S., Blom, N.: Prediction of proprotein convertase cleavage sites. Protein Eng. Des. Sel. 17, 107–112 (2004)CrossRefGoogle Scholar
  12. 12.
    Baldi, P., et al.: Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16, 412–424 (2000)CrossRefGoogle Scholar
  13. 13.
    Matthews, B.W.: Comparison of predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta 405, 442–451 (1975)Google Scholar
  14. 14.
    Ustach, C.V., Kim, H.R.C.: Platelet-derived growth factor D is activated by urokinase plasminogen activator in prostate carcinoma cells. Mol. Cell Biol. 25, 6279–6288 (2005)CrossRefGoogle Scholar
  15. 15.
    Siegfried, G., et al.: Regulation of the stepwise proteolytic cleavage and secretion of PDGF-B by the proprotein convertases. Oncogene 24, 6925–6935 (2005)CrossRefGoogle Scholar
  16. 16.
    Scamuffa, N., et al.: Proprotein convertases: lessons from knockouts. FASEB J 20, 1954–1963 (2006)CrossRefGoogle Scholar
  17. 17.
    Hinuma, S., et al.: New neuropeptides containing carboxy-terminal RFamide and their receptor in mammals. Nat. Cell Biol. 2, 703–708 (2000)CrossRefGoogle Scholar
  18. 18.
    Stein, J., Steiner, D.F., Dey, A.: Processing of cocaine- and amphetamine-regulated transcript (CART) precursor proteins by prohormone convertases (PCs) and its implications. Peptides 27, 1919–1925 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Allison N. Tegge
    • 1
  • Sandra L. Rodriguez-Zas
    • 1
    • 2
    • 3
  • J. V. Sweedler
    • 3
    • 4
  • Bruce R. Southey
    • 1
    • 4
  1. 1.Department of Animal Sciences, University of Illinois at Urbana-Champaign, IL 61801USA
  2. 2.Department of Statistics, University of Illinois at Urbana-Champaign, IL 61801USA
  3. 3.Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL 61801USA
  4. 4.Department of Chemistry, University of Illinois at Urbana-Champaign, IL 61801USA

Personalised recommendations