A Fast and Exact Algorithm for the Perfect Reversal Median Problem

  • Matthias Bernt
  • Daniel Merkle
  • Martin Middendorf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4463)

Abstract

We study the problem of finding for the gene orders of three taxa a potential ancestral gene order such that the corresponding rearrangement scenario has a minimal number of reversals where each of the reversals has to preserve the common intervals of the given input gene orders. Common intervals identify sets of genes that occur consecutively in all input gene orders. The problem of finding such an ancestral gene order is called the perfect reversal median problem (pRMP). A tree based data structure for the representation of the common intervals of all input gene orders is used for the design and realization of a fast and exact algorithm — called TCIP — for solving the pRMP. It is known that for two given gene orders the minimum number of reversals to transfer one gene order into the other can be computed in polynomial time, whereas the corresponding problem with the restriction that common intervals should not be destroyed by the reversals is already NP-hard. Nevertheless, we show empirically on biological and artificial data that TCIP for the pRMP is usually even faster than the fastest exact algorithm (Caprara’s median solver) for the reversal median problem (RMP), i.e., the corresponding problem in which the common intervals are not considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bérard, S., Bergeron, A., Chauve, C.: Conservation of combinatorial structures in evolution scenarios. In: Lagergren, J. (ed.) RECOMB-WS 2004. LNCS (LNBI), vol. 3388, pp. 1–15. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Bérard, S., et al.: Perfect sorting by reversals is not always difficult. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4(1), 4–16 (2007)CrossRefGoogle Scholar
  3. 3.
    Bergeron, A., et al.: Reconstructing ancestral gene orders using conserved intervals. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 14–25. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Bergeron, A., et al.: Computing common intervals of K permutations, with applications to modular decomposition of graphs. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 779–790. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bergeron, A., Mixtacki, J., Stoye, J.: Reversal distance without hurdles and fortresses. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 388–399. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to genome comparison. J. Comp. Biol. 13(7), 1345–1354 (2006)MathSciNetGoogle Scholar
  7. 7.
    Bernt, M., Merkle, D., Middendorf, M.: A parallel algorithm for solving the reversal median problem. In: Wyrzykowski, R., et al. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 1089–1096. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Bernt, M., Merkle, D., Middendorf, M.: Genome rearrangement based on reversals that preserve conserved intervals. IEEE/ACM Transactions on Computational Biology and Bioinformatics 3(3), 275–288 (2006)CrossRefGoogle Scholar
  9. 9.
    Bernt, M., Merkle, D., Middendorf, M.: The reversal median problem, common intervals, and mitochondrial gene orders. In: R. Berthold, M., Glen, R.C., Fischer, I. (eds.) CompLife 2006. LNCS (LNBI), vol. 4216, pp. 52–63. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Bernt, M., Merkle, D., Middendorf, M.: Using median sets for inferring phylogenetic trees. Bioinformatics 23(2), e129–e135 (2007)CrossRefGoogle Scholar
  11. 11.
    Boore, J.L.: Mitochondrial gene arrangement database (2006), http://evogen.jgi.doe.gov/
  12. 12.
    Bourque, G., Pevzner, P.A.: Genome-scale evolution: Reconstructing gene orders in the ancestral species. Genome Res. 12(1), 26–36 (2002)Google Scholar
  13. 13.
    Caprara, A.: The reversal median problem. INFORMS Journal on Computing 15(1), 93–113 (2003)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Figeac, M., Varré, J.: Sorting by reversals with common intervals. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 26–37. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. In: Proceedings of the twenty-seventh annual ACM symposium on Theory of computing, pp. 178–189. ACM Press, New York (1995)CrossRefGoogle Scholar
  16. 16.
    Heber, S., Stoye, J.: Finding all common intervals of k permutations. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 207–218. Springer, Heidelberg (2001)Google Scholar
  17. 17.
    Moret, B., et al.: Inversion medians outperform breakpoint medians in phylogeny reconstruction from gene-order data. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 521–536. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Moret, B., Tang, J., Warnow, T.: Reconstructing phylogenies from gene-content and gene-order data. In: Mathematics of Evolution and Phylogeny (2005)Google Scholar
  19. 19.
    Siepel, A., Moret, B.: Finding an optimal inversion median: Experimental results. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 189–203. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Tannier, E., Bergeron, A., Sagot, M.-F.: Advances in sorting by reversals. Accepted at Discrete Applied Mathematics (2005)Google Scholar
  21. 21.
    Uno, T., Yagiura, M.: Fast algorithms to enumerate all common intervals of two permutations. Algorithmica 2(26), 290–309 (2000)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Matthias Bernt
    • 1
  • Daniel Merkle
    • 1
  • Martin Middendorf
    • 1
  1. 1.Department of Computer Science, University of LeipzigGermany

Personalised recommendations