Advertisement

Coalgebraic Modal Logic in CoCasl

  • Lutz Schröder
  • Till Mossakowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4409)

Abstract

We propose to extend the algebraic-coalgebraic specification language CoCasl by full coalgebraic modal logic based on predicate liftings for functors. This logic is more general than the modal logic previously used in CoCasl and supports the specification of a variety of modal logics, such as graded modal logic, majority logic, and probabilistic modal logic. CoCasl thus becomes a modern modal language that covers a wide range of Kripke and non-Kripke semantics of modal logics via the coalgebraic interpretation.

Keywords

Modal Operator Modal Logic Successor State Type Constructor Kripke Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bidoit, M., Mosses, P.D. (eds.): CASL User Manual. LNCS, vol. 2900. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  2. 2.
    Chellas, B.: Modal Logic. Cambridge (1980)Google Scholar
  3. 3.
    Cîrstea, C., Pattinson, D.: Modular construction of modal logics. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 258–275. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    D’Agostino, G., Visser, A.: Finality regained: A coalgebraic study of Scott-sets and multisets. Arch. Math. Logic 41, 267–298 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Hansen, H.H., Kupke, C.: A coalgebraic perspective on monotone modal logic. In: Coalgebraic Methods in Computer Science, CMCS 04. ENTCS, vol. 106, pp. 121–143. Elsevier, Amsterdam (2004)Google Scholar
  6. 6.
    Hausmann, D., Mossakowski, T., Schröder, L.: A coalgebraic approach to the semantics of the ambient calculus. Theoret. Comput. Sci. 366, 121–143 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Heifetz, A., Mongin, P.: Probabilistic logic for type spaces. Games and Economic Behavior 35, 31–53 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Jacobs, B.: Towards a duality result in the modal logic of coalgebras. In: Coalgebraic Methods in Computer Science, CMCS 00. ENTCS, vol. 33, Elsevier, Amsterdam (2000)Google Scholar
  9. 9.
    Kupke, C., Kurz, A., Pattinson, D.: Ultrafilter extensions for coalgebras. In: Fiadeiro, J.L., Harman, N., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629, pp. 263–277. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Kurz, A.: Specifying coalgebras with modal logic. Theoret. Comput. Sci. 260, 119–138 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kurz, A.: Logics admitting final semantics. In: Nielsen, M., Engberg, U. (eds.) ETAPS 2002 and FOSSACS 2002. LNCS, vol. 2303, pp. 238–249. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inform. Comput. 94, 1–28 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Mossakowski, T.: Heterogeneous specification and the heterogeneous tool set. Habilitation thesis, University of Bremen (2004)Google Scholar
  14. 14.
    Mossakowski, T., Schröder, L., Roggenbach, M., Reichel, H.: Algebraic-co-algebraic specification in CoCASL. J. Logic Algebraic Programming 67, 146–197 (2006)zbMATHCrossRefGoogle Scholar
  15. 15.
    Mosses, P.D. (ed.): CASL Reference Manual. LNCS, vol. 2960. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  16. 16.
    Pacuit, E., Salame, S.: Majority logic. In: Principles of Knowledge Representation and Reasoning, KR 04, pp. 598–604. AAAI Press, Menlo Park (2004)Google Scholar
  17. 17.
    Pattinson, D.: Semantical principles in the modal logic of coalgebras. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 514–526. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Pattinson, D.: Expressive logics for coalgebras via terminal sequence induction. Notre Dame J. Formal Logic 45, 19–33 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Peyton-Jones, S.: Haskell 98 Language and Libraries — The Revised Report (Also: J. Funct. Programming 13 (2003)). Cambridge (2003)Google Scholar
  20. 20.
    Rößiger, M.: Coalgebras and modal logic. In: Coalgebraic Methods in Computer Science, CMCS 00. ENTCS, vol. 33, Elsevier, Amsterdam (2000)Google Scholar
  21. 21.
    Rutten, J.: Universal coalgebra: A theory of systems. Theoret. Comput. Sci. 249, 3–80 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Schröder, L.: Expressivity of coalgebraic modal logic: the limits and beyond (Extended version to appear in: Theoret. Comput. Sci.). In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 440–454. Springer, Heidelberg (2005)Google Scholar
  23. 23.
    Schröder, L.: A finite model construction for coalgebraic modal logic (Extended version to appear in: J. Logic Algebraic Programming). In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006 and ETAPS 2006. LNCS, vol. 3921, pp. 157–171. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Schröder, L., Mossakowski, T., Lüth, C.: Type class polymorphism in an institutional framework. In: Fiadeiro, J.L., Mosses, P.D., Orejas, F. (eds.) WADT 2004. LNCS, vol. 3423, pp. 234–248. Springer, Heidelberg (2005)Google Scholar
  25. 25.
    Schröder, L., Mossakowski, T., Maeder, C.: HasCASL – Integrated functional specification and programming. Language summary(2003), Available at, http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/HasCASL
  26. 26.
    Schröder, L., Pattinson, D.: PSPACE reasoning for rank-1 modal logics. In: Logic in Computer Science, LICS 06, pp. 231–240. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  27. 27.
    Thomsen, B.: A theory of higher order communicating systems. Inform. and Comput. 116, 38–57 (1995)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Lutz Schröder
    • 1
  • Till Mossakowski
    • 1
  1. 1.Department of Computer Science, University of Bremen, and, DFKI Lab BremenGermany

Personalised recommendations