Using Non-Normality for Passive Laminar Flow Control

  • C. Cossu
  • L. Brandt
  • J. H. M. Fransson
  • A. Talamelli
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 12)


Streamwise Velocity Spanwise Direction Streamwise Vortex Freestream Velocity Secondary Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ABBH01]
    P. Andersson, L. Brandt, A. Bottaro, and D. Henningson. On the breakdown of boundary layers streaks. J. Fluid Mech., 428:29–60, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [ABH99]
    P. Andersson, M. Berggren, and D. Henningson. Optimal disturbances and bypass transition in boundary layers. Phys. Fluids, 11(1):134–150, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [CB02]
    C. Cossu and L. Brandt. Stabilization of Tollmien-Schlichting waves by finite amplitude optimal streaks in the Blasius boundary layer. Phys. Fluids, 14:L57–L60, 2002.CrossRefGoogle Scholar
  4. [CB04]
    C. Cossu and L. Brandt. On Tollmien-Schlichting waves in streaky boundary layers. Eur. J. Mech./B Fluids, 23:815–833, 2004.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [Cho06]
    K. S. Choi. The rough with the smooth. Nature, 440:754, 2006.CrossRefGoogle Scholar
  6. [FBTC04]
    J. Fransson, L. Brandt, A. Talamelli, and C. Cossu. Experimental and theoretical investigation of the non-modal growth of steady streaks in a flat plate boundary layer. Phys. Fluids, 16:3627–3638, 2004.CrossRefGoogle Scholar
  7. [FBTC05]
    J. Fransson, L. Brandt, A. Talamelli, and C. Cossu. Experimental study of the stabilisation of Tollmien-Schlichting waves by finite amplitude streaks. Phys. Fluids, 17:054110, 2005.CrossRefGoogle Scholar
  8. [FTBC06]
    J. Fransson, A. Talamelli, L. Brandt, and C. Cossu. Delaying transition to turbulence by a passive mechanism. Phys. Rev. Lett., 96:064501, 2006.CrossRefGoogle Scholar
  9. [Gus91]
    L. H. Gustavsson. Energy growth of three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech., 224:241–260, 1991.zbMATHCrossRefGoogle Scholar
  10. [Her88]
    Th. Herbert. Secondary instability of boundary-layers. Annu. Rev. Fluid Mech., (20):487-526, 1988.Google Scholar
  11. [LBS+99]
    A. Lundbladh, S. Berlin, M. Skote, C. Hildings, J. Choi, J. Kim, and D. S. Henningson. An efficient spectral method for simulation of incompressible flow over a flat plate. Technical Report KTH/MEK/TR-99/11-SE, KTH, Department of Mechanics, Stockholm, 1999.Google Scholar
  12. [Luc00]
    P. Luchini. Reynolds-number independent instability of the boundary layer over a flat surface. part 2: Optimal perturbations. J. Fluid Mech., 404:289–309, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [RH93]
    S. C. Reddy and D. S. Henningson. Energy growth in viscous channel flows. J. Fluid Mech., 252:209–238, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [Sch79]
    H. Schlichting. Boundary-Layer Theory. Mc Graw-Hill, New York, 1979.zbMATHGoogle Scholar
  15. [SH01]
    P. J. Schmid and D. S. Henningson. Stability and Transition in Shear Flows. Springer, New York, 2001.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • C. Cossu
    • 1
  • L. Brandt
    • 2
  • J. H. M. Fransson
    • 2
  • A. Talamelli
    • 3
  1. 1.LadHyXCNRS/Ecole PolytechniquePalaiseauFrance
  2. 2.KTH MechanicsStockholmSweden
  3. 3.II Facoltà di IngegneriaUniversità di BolognaForlìItaly

Personalised recommendations