Optimal Station Keeping for Geostationary Satellites with Electric Propulsion Systems Under Eclipse Constraints

  • P. Romero
  • J. M. Gambi
  • E. Patiño
  • R. Antolin
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 12)

In order to keep geostationary satellites within the prescribed boundaries to satisfy mission requirements, orbital station keeping manoeuvres are performed periodically to compensate natural perturbations on the satellites.

The propulsion systems currently used to modify the orbit are of chemical nature (usually, hydrazine) but new trends in spatial propulsion point towards the use of electric systems. The use of these systems introduces new problems such as the impossibility to perform manoeuvres at eclipse epochs.

A procedure is proposed here to analyze the implementation of optimal strategies in terms of electric energy consumption to satisfy the additional constraints imposed by the use of these kind of systems.


Propulsion System Geostationary Satellite Orbit Evolution Electric Energy Consumption Correction Manoeuvre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Cne80]
    G. Legendre, Le maintien à poste de satellites géostationnaries I. Cours de Technologie Spatiale. CNES Toulouse, pp. 583-609 (1980)Google Scholar
  2. [EP03]
    B.P. Emma, H.J. Pernicka, Algorithm for autonomous longitude and eccentricity control for geostationary spacecraft, Journal of Guidance Con- trol and Dynamics 26, (3), 483-490 (2003)CrossRefGoogle Scholar
  3. [GFJ00]
    E. Gottzein, W. Fichter, A. Jablonsky, O. Juckenhofel, M. Mittnacht, C. Muller, M. Surauer, Challenges in the control and autonomy of com- munications satellites, Control Engineering Practice, 8, 409-427 (2000)CrossRefGoogle Scholar
  4. [KW82]
    A.A. Kamel, C.A. Wagner, On the Orbital Eccentricity Control of Syn- cronous Satellites, J.Astronutical Sci., XXX, 61-73 (1982)Google Scholar
  5. [Klu04]
    C.A. Kluever, Geostationary orbit transfers using solar electric propulsion with specific impulses modulation, Journal of Spacecraft and Rockets, 41, 461-466 (2004)CrossRefGoogle Scholar
  6. [RGP06]
    P. Romero, J.M. Gambi, E. Patino, Stationkeeping manoeuvres for geo- stationary satellites using feedback control techniques, Aerospace Science and Technologie, doi.10.1016/j.ast.2006.08.003 (2006)Google Scholar
  7. [SDB88]
    D. Slavinskas, H. Daddaghi, W. Bendent, G. Johnson, Efficient Inclination Control for Geostationary Satellites, Journal of Guidance, Control and Dynamics 11, (6), 584-589 (1988)zbMATHCrossRefGoogle Scholar
  8. [Soo94]
    E.M. Soop, Handbook of Geostationary Orbits, Space Technology Library, Kluwer Academic Publishers, Dordrecht (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • P. Romero
    • 1
  • J. M. Gambi
    • 2
  • E. Patiño
    • 3
  • R. Antolin
    • 4
  1. 1.Instituto de Astronomía y Geodesia (UCM-CSIC), Facultad de MatemáticasUniversidad Complutense de MadridMadridSpain
  2. 2.M.S.M.IUniversidad Carlos IIILeganésSpain
  3. 3.Dep. Matemática Aplicada, E.T.S. ArquitecturaUniversidad Politécnica de MadridMadridSpain
  4. 4.DIIAR Polo Regionale di ComoPolitecnico di MilanoComoItaly

Personalised recommendations