Approximating Offsets of Surfaces by using the Support function Representation

  • Jens Gravesen
  • Bert Jüttler
  • Zbyněk Šír
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 12)

The support function (SF) representation of surfaces is useful for analyzing curvatures and for representing offset surfaces. After reviewing basic properties of the SF representation, we discuss several techniques for approximating the SF of a given surface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ANS]
    Alfeld, P., Neamtu, M., Schumaker, L. L., Fitting scattered data on spherelike surfaces using spherical splines, J. Comput. Appl. Math., 73, 5–43 (1996).MATHCrossRefMathSciNetGoogle Scholar
  2. [Gra]
    Gravesen, J.: Surfaces Parametrised by the Normals. Computing, to appear.Google Scholar
  3. [Gro]
    Groemer, H. Geometric Applications of Fourier Series and Spherical Harmonics Cambridge University Press, Cambridge, 1996.MATHGoogle Scholar
  4. [Mae]
    Maekawa, T., An overview of offset curves and surfaces, Comput.-Aided Des. 31, 165-173 (1999).MATHCrossRefGoogle Scholar
  5. [PP]
    Peternell, M., and Pottmann, H., A Laguerre geometric approach to rational offsets, Computer Aided Geometric Design 15, 223–249 (1998).MATHCrossRefMathSciNetGoogle Scholar
  6. [Sab]
    Sabin, M.: A Class of Surfaces Closed under Five Important Geometric Operations, Technical Report, British Aircraft Corporation Ltd. (1974)Google Scholar
  7. [SPJ]
    Sampoli, M.L., Peternell, M., Jüttler, B.: Rational surfaces with linear normals and their convolutions with rational surfaces, Comput. Aided Geom. Design 23, 179–192 (2006)MATHCrossRefMathSciNetGoogle Scholar
  8. [SGJ1]
    Šír, Z., Gravesen, J., Jüttler, B.: Curves and surfaces represented by polynomial support functions, submitted. Available as SFB report at http://www.sfb013.uni-linz.ac.at.
  9. [SGJ2]
    Šír, Z., Gravesen, J., Jüttler, B.: Computing Minkowski sums via Support Function Representation, submitted, available as FSP report at http://www.ig. jku.at

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jens Gravesen
  • Bert Jüttler
    • 1
  • Zbyněk Šír
    • 1
  1. 1.Kepler University LinzAustria

Personalised recommendations