Advertisement

New Millennium AI and the Convergence of History

  • Jürgen Schmidhuber
Part of the Studies in Computational Intelligence book series (SCI, volume 63)

Summary

Artificial Intelligence (AI) has recently become a real formal science: the new millennium brought the first mathematically sound, asymptotically optimal, universal problem solvers, providing a new, rigorous foundation for the previously largely heuristic field of General AI and embedded agents. At the same time there has been rapid progress in practical methods for learning true sequence-processing programs, as opposed to traditional methods limited to stationary pattern association. Here we will briefly review some of the new results, and speculate about future developments, pointing out that the time intervals between the most notable events in over 40,000 years or 29 lifetimes of human history have sped up exponentially, apparently converging to zero within the next few decades. Or is this impression just a by-product of the way humans allocate memory space to past events?

Keywords

Neural Network Recurrent Neural Network Neural Information Processing System Input Stream Neural Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. B. Almeida. A learning rule for asynchronous perceptrons with feedback in a combinatorial environment. In IEEE 1st International Conference on Neural Networks, San Diego, volume 2, pages 609-618, 1987.Google Scholar
  2. [2]
    S. Baluja and R. Caruana. Removing the genetics from the standard genetic algorithm. In A. Prieditis and S. Russell, editors, Machine Learning: Proceedings of the Twelfth International Conference, pages 38-46. Morgan Kaufmann Publishers, San Francisco, CA, 1995.Google Scholar
  3. [3]
    N. Beringer, A. Graves, F. Schiel, and J. Schmidhuber. Classifying unprompted speech by retraining LSTM nets. In W. Duch, J. Kacprzyk, E. Oja, and S. Zadrozny, editors, Artificial Neural Networks: Biological Inspirations - ICANN 2005, LNCS 3696, pages 575-581. SpringerVerlag Berlin Heidelberg, 2005. CrossRefGoogle Scholar
  4. [4]
    C. M. Bishop. Neural networks for pattern recognition. Oxford University Press, 1995.Google Scholar
  5. [5]
    Alan D. Blair and Jordan B. Pollack. Analysis of dynamical recognizers. Neural Computation, 9(5):1127-1142, 1997. CrossRefGoogle Scholar
  6. [6]
    M. Boden and J. Wiles. Context-free and context-sensitive dynamics in recurrent neural networks. Connection Science, 2000.Google Scholar
  7. [7]
    H.A. Bourlard and N. Morgan. Connnectionist Speech Recognition: A Hybrid Approach. Kluwer Academic Publishers, 1994.Google Scholar
  8. [8]
    M. P. Casey. The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction. Neural Computation, 8(6):1135-1178, 1996. CrossRefGoogle Scholar
  9. [9]
    N. L. Cramer. A representation for the adaptive generation of simple sequential programs. In J.J. Grefenstette, editor, Proceedings of an International Conference on Genetic Algorithms and Their Applications, Carnegie-Mellon University, July 24-26, 1985, Hillsdale NJ, 1985. Lawrence Erlbaum Associates. Google Scholar
  10. [10]
    B. de Vries and J. C. Principe. A theory for neural networks with time delays. In R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing Systems 3, pages 162-168. Morgan Kaufmann, 1991.Google Scholar
  11. [11]
    D. Dickmanns, J. Schmidhuber, and A. Winklhofer. Der genetische Algorithmus: Eine Implementierung in Prolog. Fortgeschrittenenpraktikum, Institut für Informatik, Lehrstuhl Prof. Radig, Technische Universität München, 1987.Google Scholar
  12. [12]
    J. L. Elman. Finding structure in time. Technical Report CRL Technical Report 8801, Center for Research in Language, University of California, San Diego, 1988. Google Scholar
  13. [13]
    S. E. Fahlman. The recurrent cascade-correlation learning algorithm. In R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing Systems 3, pages 190-196. Morgan Kaufmann, 1991.Google Scholar
  14. [14]
    F. A. Gers and J. Schmidhuber. Neural processing of complex continual input streams. In Proc. IJCNN'2000, Int. Joint Conf. on Neural Networks, Como, Italy, 2000.Google Scholar
  15. [15]
    F. A. Gers and J. Schmidhuber. Recurrent nets that time and count. In Proc. IJCNN'2000, Int. Joint Conf. on Neural Networks, Como, Italy, 2000.Google Scholar
  16. [16]
    F. A. Gers and J. Schmidhuber. LSTM recurrent networks learn simple context free and context sensitive Languages. IEEE Transactions on Neural Networks, 12(6):1333-1340, 2001.CrossRefGoogle Scholar
  17. [17]
    F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual prediction with LSTM. Neural Computation, 12(10):2451-2471, 2000.CrossRefGoogle Scholar
  18. [18]
    F. A. Gers, N. Schraudolph, and J. Schmidhuber. Learning precise timing with LSTM recurrent networks. Journal of Machine Learning Research, 3:115-143, 2002.CrossRefMathSciNetGoogle Scholar
  19. [19]
    F. Gomez and J. Schmidhuber. Evolving modular fast-weight networks for control. In W. Duch, J. Kacprzyk, E. Oja, and S. Zadrozny, editors, Artificial Neural Networks: Biological Inspirations - ICANN 2005, LNCS 3697, pages 383-389. Springer-Verlag Berlin Heidelberg, 2005.Google Scholar
  20. [20]
    F. J. Gomez. Robust Nonlinear Control through Neuroevolution. PhD thesis, Department of Computer Sciences, University of Texas at Austin, 2003.Google Scholar
  21. [21]
    F. J. Gomez and R. Miikkulainen. Incremental evolution of complex general behavior. Adaptive Behavior, 5:317-342, 1997. CrossRefGoogle Scholar
  22. [22]
    F. J. Gomez and R. Miikkulainen. Solving non-Markovian control tasks with neuroevolution. In Proc. IJCAI 99, Denver, CO, 1999. Morgan Kaufman.Google Scholar
  23. [23]
    F. J. Gomez and R. Miikkulainen. Active guidance for a finless rocket using neuroevolution. In Proc. GECCO 2003, Chicago, 2003. Winner of Best Paper Award in Real World Applications. Gomez is working at IDSIA on a CSEM grant to J. Schmidhuber.Google Scholar
  24. [24]
    F. J. Gomez and J. Schmidhuber. Coevolving recurrent neurons learn deep memory POMDPs. In Proc. of the 2005 conference on genetic and evolutionary computation (GECCO), Washington, D. C. ACM Press, New York, NY, USA, 2005. Nominated for a best paper award.Google Scholar
  25. [25]
    A. Graves, N. Beringer, and J. Schmidhuber. Rapid retraining on speech data with LSTM recurrent networks. Technical Report IDSIA-09-05, IDSIA, www.idsia.ch/techrep.html, 2005.
  26. [26]
    A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber. Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural nets. In ICML'06: Proceedings of the International Conference on Machine Learning, 2006.Google Scholar
  27. [27]
    A. Graves and J. Schmidhuber. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 18:602-610, 2005.CrossRefGoogle Scholar
  28. [28]
    A. Graves and J. Schmidhuber. Framewise phoneme classification with bidirectional LSTM networks. In Proc. Int. Joint Conf. on Neural Networks IJCNN 2005, 2005.Google Scholar
  29. [29]
    S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München, 1991. Seewww.informatik.tumuenchen.de/~hochreit advisor: J. Schmidhuber.
  30. [30]
    S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In S. C. Kremer and J. F. Kolen, editors, A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press, 2001.Google Scholar
  31. [31]
    S. Hochreiter and K. Obermayer. Sequence classification for protein analysis. In Snowbird Workshop, Snowbird, Utah, April 5-8 2005. Computational and Biological Learning Society.Google Scholar
  32. [32]
    S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735-1780, 1997.CrossRefGoogle Scholar
  33. [33]
    J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, 1975.Google Scholar
  34. [34]
    J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proc. of the National Academy of Sciences, 79:2554-2558, 1982. CrossRefMathSciNetGoogle Scholar
  35. [35]
    M. Hutter. The fastest and shortest algorithm for all well-defined problems. International Journal of Foundations of Computer Science, 13 (3):431-443, 2002. (On J. Schmidhuber's SNF grant 20-61847).zbMATHCrossRefMathSciNetGoogle Scholar
  36. [36]
    M. Hutter. Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability. springer, Berlin, 2004. (On J. Schmidhuber's SNF grant 20-61847).Google Scholar
  37. [37]
    H. Jaeger. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science, 304:78-80, 2004. CrossRefGoogle Scholar
  38. [38]
    L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: a survey. Journal of AI research, 4:237-285, 1996. Google Scholar
  39. [39]
    Y. Kalinke and H. Lehmann. Computation in recurrent neural networks: From counters to iterated function systems. In G. Antoniou and J. Slaney, editors, Advanced Topics in Artificial Intelligence, Proceedings of the 11th Australian Joint Conference on Artificial Intelligence, volume 1502 of LNAI, Berlin, Heidelberg, 1998. Springer.Google Scholar
  40. [40]
    R. Kurzweil. The Singularity is near. Wiley Interscience, 2005.Google Scholar
  41. [41]
    L. A. Levin. Universal sequential search problems. Problems of Information Transmission, 9(3):265-266, 1973. Google Scholar
  42. [42]
    M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity and its Applications (2nd edition). Springer, 1997.Google Scholar
  43. [43]
    T. Lin, B.G. Horne, P. Tino, and C.L. Giles. Learning long-term dependencies in NARX recurrent neural networks. IEEE Transactions on Neural Networks, 7(6):1329-1338, 1996. CrossRefGoogle Scholar
  44. [44]
    O. Miglino, H. Lund, and S. Nolfi. Evolving mobile robots in simulated and real environments. Artificial Life, 2(4):417-434, 1995. CrossRefGoogle Scholar
  45. [45]
    C. B. Miller and C. L. Giles. Experimental comparison of the effect of order in recurrent neural networks. International Journal of Pattern Recognition and Artificial Intelligence, 7(4):849-872, 1993.CrossRefGoogle Scholar
  46. [46]
    G. Miller, P. Todd, and S. Hedge. Designing neural networks using genetic algorithms. In Proceedings of the 3rd International Conference on Genetic Algorithms, pages 379-384. Morgan Kauffman, 1989.Google Scholar
  47. [47]
    T. Mitchell. Machine Learning. McGraw Hill, 1997.Google Scholar
  48. [48]
    H. Moravec. Robot. Wiley Interscience, 1999.Google Scholar
  49. [49]
    D. E. Moriarty and R. Miikkulainen. Efficient reinforcement learning through symbiotic evolution. Machine Learning, 22:11-32, 1996. Google Scholar
  50. [50]
    M. C. Mozer. A focused back-propagation algorithm for temporal sequence recognition. Complex Systems, 3:349-381, 1989. zbMATHMathSciNetGoogle Scholar
  51. [51]
    M. C. Mozer. Induction of multiscale temporal structure. In D. S. Lippman, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing Systems 4, pages 275-282. Morgan Kaufmann, 1992.Google Scholar
  52. [52]
    A. Newell and H. Simon. GPS, a program that simulates human thought. In E. Feigenbaum and J. Feldman, editors, Computers and Thought, pages 279-293. McGraw-Hill, New York, 1963. Google Scholar
  53. [53]
    S. Nolfi, D. Floreano, O. Miglino, and F. Mondada. How to evolve autonomous robots: Different approaches in evolutionary robotics. In R. A. Brooks and P. Maes, editors, Fourth International Workshop on the Synthesis and Simulation of Living Systems (Artificial Life IV), pages 190-197. MIT, 1994.Google Scholar
  54. [54]
    J. R. Olsson. Inductive functional programming using incremental program transformation. Artificial Intelligence, 74(1):55-83, 1995. CrossRefGoogle Scholar
  55. [55]
    B. A. Pearlmutter. Learning state space trajectories in recurrent neural networks. Neural Computation, 1(2):263-269, 1989. CrossRefGoogle Scholar
  56. [56]
    B. A. Pearlmutter. Gradient calculations for dynamic recurrent neural networks: A survey. IEEE Transactions on Neural Networks, 6(5):1212-1228,1995. CrossRefGoogle Scholar
  57. [57]
    R. Penrose. A generalized inverse for matrices. In Proceedings of the Cambridge Philosophy Society, volume 51, pages 406-413, 1955.Google Scholar
  58. [58]
    J. A. Pérez-Ortiz, F. A. Gers, D. Eck, and J. Schmidhuber. Kalman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets. Neural Networks, (16):241-250, 2003. CrossRefGoogle Scholar
  59. [59]
    J. A. Pérez-Ortiz, F. A. Gers, D. Eck, and J. Schmidhuber. Kalman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets. Neural Networks, 16(2):241-250, 2003.CrossRefGoogle Scholar
  60. [60]
    F. J. Pineda. Recurrent backpropagation and the dynamical approach to adaptive neural computation. Neural Computation, 1(2):161-172, 1989.CrossRefGoogle Scholar
  61. [61]
    T. A. Plate. Holographic recurrent networks. In J. D. Cowan S. J. Hanson and C. L. Giles, editors, Advances in Neural Information Processing Systems 5, pages 34-41. Morgan Kaufmann, 1993.Google Scholar
  62. [62]
    G. V. Puskorius and L. A. Feldkamp. Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks. IEEE Transactions on Neural Networks, 5(2):279-297, 1994. CrossRefGoogle Scholar
  63. [63]
    I. Rechenberg. Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Dissertation, 1971. Published 1973 by Fromman-Holzboog.Google Scholar
  64. [64]
    M. B. Ring. Learning sequential tasks by incrementally adding higher orders. In J. D. Cowan S. J. Hanson and C. L. Giles, editors, Advances in Neural Information Processing Systems 5, pages 115-122. Morgan Kaufmann, 1993.Google Scholar
  65. [65]
    A. J. Robinson and F. Fallside. The utility driven dynamic error propagation network. Technical Report CUED/FINFENG/TR.1, Cambridge University Engineering Department, 1987.Google Scholar
  66. [66]
    Anthony J. Robinson. An application of recurrent nets to phone probability estimation. IEEE Transactions on Neural Networks, 5(2):298-305, March 1994. CrossRefGoogle Scholar
  67. [67]
    P. Rodriguez, J. Wiles, and J Elman. A recurrent neural network that learns to count. Connection Science, 11(1):5-40, 1999.CrossRefGoogle Scholar
  68. [68]
    Paul Rodriguez and Janet Wiles. Recurrent neural networks can learn to implement symbol-sensitive counting. In Advances in Neural Information Processing Systems, volume 10, pages 87-93. The MIT Press, 1998.Google Scholar
  69. [69]
    P. S. Rosenbloom, J. E. Laird, and A. Newell. The SOAR Papers. MIT Press, 1993.Google Scholar
  70. [70]
    D. E. Rumelhart and J. L. McClelland, editors. Parallel Distributed Processing, volume 1. MIT Press, 1986.Google Scholar
  71. [71]
    R. P. Salustowicz and J. Schmidhuber. Probabilistic incremental program evolution. Evolutionary Computation, 5(2):123-141, 1997.CrossRefGoogle Scholar
  72. [72]
    R. P. Salustowicz, M. A. Wiering, and J. Schmidhuber. Learning team strategies: Soccer case studies. Machine Learning,33(2/3):263-282, 1998.zbMATHCrossRefGoogle Scholar
  73. [73]
    J. Schmidhuber. Evolutionary principles in self-referential learning. Diploma thesis, Institut für Informatik, Technische Universität München, 1987.Google Scholar
  74. [74]
    J. Schmidhuber. Dynamische neuronale Netze und das fundamentale raumzeitliche Lernproblem. Dissertation, Institut für Informatik, Technische Universität München, 1990.Google Scholar
  75. [75]
    J. Schmidhuber. An online algorithm for dynamic reinforcement learning and planning in reactive environments. In Proc. IEEE/INNS International Joint Conference on Neural Networks, San Diego, volume 2, pages 253-258, 1990.Google Scholar
  76. [76]
    J. Schmidhuber. Reinforcement learning in Markovian and non Markovian environments. In D. S. Lippman, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing Systems 3 (NIPS 3), pages 500-506. Morgan Kaufmann, 1991.Google Scholar
  77. [77]
    J. Schmidhuber. A fixed size storage O(n3 ) time complexity learning algorithm for fully recurrent continually running networks. Neural Computation, 4(2):243-248, 1992.CrossRefGoogle Scholar
  78. [78]
    J. Schmidhuber. Learning to control fast-weight memories: An alternative to recurrent nets. Neural Computation, 4(1):131-139, 1992. CrossRefGoogle Scholar
  79. [79]
    J. Schmidhuber. Netzwerkarchitekturen, Zielfunktionen und Kettenregel. Habilitationsschrift, Institut für Informatik, Technische Universität München, 1993.Google Scholar
  80. [80]
    J. Schmidhuber. Hierarchies of generalized Kolmogorov complexities and nonenumerable universal measures computable in the limit. International Journal of Foundations of Computer Science, 13(4):587-612, 2002. zbMATHCrossRefMathSciNetGoogle Scholar
  81. [81]
    J. Schmidhuber. The Speed Prior: a new simplicity measure yielding near-optimal computable predictions. In J. Kivinen and R. H. Sloan, editors, Proceedings of the 15th Annual Conference on Computational Learning Theory (COLT 2002), Lecture Notes in Artificial Intelligence, pages 216-228. Springer, Sydney, Australia, 2002.Google Scholar
  82. [82]
    J. Schmidhuber. Exponential speed-up of computer history's defining moments, 2003. http://www.idsia.ch/~juergen/computerhistory.html
  83. [83]
    J. Schmidhuber. Gödel machines: self-referential universal problem solvers making provably optimal self-improvements. Technical Report IDSIA-19-03, arXiv:cs.LO/0309048, IDSIA, Manno-Lugano, Switzerland, 2003.Google Scholar
  84. [84]
    J. Schmidhuber. The new AI: General & sound & relevant for physics. Technical Report TR IDSIA-04-03, Version1.0, cs.AI/0302012v1, February 2003.Google Scholar
  85. [85]
    J. Schmidhuber. Overview of work on robot learning, with publications, 2004. http://www.idsia.ch/~juergen/learningrobots.html
  86. [86]
    J. Schmidhuber. Completely self-referential optimal reinforcement learners. In W. Duch, J. Kacprzyk, E. Oja, and S. Zadrozny, editors, Artificial Neural Networks: Biological Inspirations - ICANN 2005, LNCS 3697, pages 223-233. Springer-Verlag Berlin Heidelberg, 2005. Plenary talk.Google Scholar
  87. [87]
    J. Schmidhuber. Gödel machines: Towards a technical justification of consciousness. In D. Kudenko, D. Kazakov, and E. Alonso, editors, Adaptive Agents and Multi-Agent Systems III (LNCS 3394), pages 1-23. Springer Verlag, 2005.Google Scholar
  88. [88]
    J. Schmidhuber. Artificial Intelligence- history highlights and outlook: AI maturing and becoming a real formal science,2006. http://www.idsia.ch/~juergen/ai.html
  89. [89]
    J. Schmidhuber. Developmental robotics, optimal artificial curiosity, creativity, music, and the fine arts. Connection Science, 18(2):173-187, 2006.CrossRefGoogle Scholar
  90. [90]
    J. Schmidhuber. Gödel machines: fully self-referential optimal universal problem solvers. In B. Goertzel and C. Pennachin, editors, Artificial General Intelligence. Springer Verlag, in press, 2006.Google Scholar
  91. [91]
    J. Schmidhuber. Is history converging? Again?,2006. http://www.idsia.ch/~juergen/history.html
  92. [92]
    J. Schmidhuber and B. Bakker. NIPS 2003 RNNaissance workshop on recurrent neural networks, Whistler, CA, 2003. http://www.idsia.ch/~juergen/rnnaissance.html .
  93. [93]
    J. Schmidhuber, M. Gagliolo, D. Wierstra, and F. Gomez. Evolino for recurrent support vector machines. In ESANN'06, 2006.Google Scholar
  94. [94]
    J. Schmidhuber, F. Gers, and D. Eck. Learning nonregular Languages: A comparison of simple recurrent networks and LSTM. Neural Computation, 14(9):2039-2041, 2002.zbMATHCrossRefGoogle Scholar
  95. [95]
    J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez. Training recurrent networks by EVOLINO. Neural Computation, 2006, in press.Google Scholar
  96. [96]
    J. Schmidhuber, D. Wierstra, and F. J. Gomez. Evolino: Hybrid neuroevolution / optimal linear search for sequence prediction. In Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI), pages 853-858, 2005.Google Scholar
  97. [97]
    J. Schmidhuber, J. Zhao, and N. Schraudolph. Reinforcement learning with self-modifying policies. In S. Thrun and L. Pratt, editors, Learning to learn, pages 293-309. Kluwer, 1997.Google Scholar
  98. [98]
    H. P. Schwefel. Numerische Optimierung von Computer-Modellen. Dissertation, 1974. Published 1977 by Birkhäuser, Basel.Google Scholar
  99. [99]
    C. E. Shannon. A mathematical theory of communication (parts I and II). Bell System Technical Journal, XXVII:379-423, 1948. MathSciNetGoogle Scholar
  100. [100]
    H. T. Siegelmann and E. D. Sontag. Turing computability with neural nets. Applied Mathematics Letters, 4(6):77-80, 1991. zbMATHCrossRefMathSciNetGoogle Scholar
  101. [101]
    H.T. Siegelmann. Theoretical Foundations of Recurrent Neural Networks. PhD thesis, Rutgers, New Brunswick Rutgers, The State of New Jersey, 1992.Google Scholar
  102. [102]
    K. Sims. Evolving virtual creatures. In Andrew Glassner, editor, Proceedings of SIGGRAPH'94 (Orlando, Florida, July 1994), Computer Graphics Proceedings, Annual Conference, pages 15-22. ACM SIGGRAPH, ACM Press, jul 1994. ISBN 0-89791-667-0.Google Scholar
  103. [103]
    V. Smil. Detonator of the population explosion. Nature, 400:415, 1999.CrossRefGoogle Scholar
  104. [104]
    R. J. Solomonoff. A formal theory of inductive inference. Part I. Information and Control, 7:1-22, 1964.zbMATHCrossRefMathSciNetGoogle Scholar
  105. [105]
    R. J. Solomonoff. Complexity-based induction systems. IEEE Transactions on Information Theory, IT-24(5):422-432, 1978. CrossRefMathSciNetGoogle Scholar
  106. [106]
    M. Steijvers and P.D.G. Grunwald. A recurrent network that performs a contextsensitive prediction task. In Proceedings of the 18th Annual Conference of the Cognitive Science Society. Erlbaum, 1996.Google Scholar
  107. [107]
    G. Sun, H. Chen, and Y. Lee. Time warping invariant neural networks. In J. D. Cowan S. J. Hanson and C. L. Giles, editors, Advances in Neural Information Processing Systems 5, pages 180-187. Morgan Kaufmann, 1993.Google Scholar
  108. [108]
    G. Z. Sun, C. Lee Giles, H. H. Chen, and Y. C. Lee. The neural network pushdown automaton: Model, stack and learning simulations. Technical Report CS-TR-3118, University of Maryland, College Park, August 1993.Google Scholar
  109. [109]
    R. Sutton and A. Barto. Reinforcement learning: An introduction. Cambridge, MA, MIT Press, 1998.Google Scholar
  110. [110]
    B. Tonkes and J. Wiles. Learning a context-free task with a recurrent neural network: An analysis of stability. In Proceedings of the Fourth Biennial Conference of the Australasian Cognitive Science Society, 1997.Google Scholar
  111. [111]
    P. Utgoff. Shift of bias for inductive concept learning. In R. Michalski, J. Carbonell, and T. Mitchell, editors, Machine Learning, volume 2, pages 163-190. Morgan Kaufmann, Los Altos, CA, 1986.Google Scholar
  112. [112]
    V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.zbMATHGoogle Scholar
  113. [113]
    V. Vinge. The coming technological singularity, 1993. VISION-21 Symposium sponsored by NASA Lewis Research Center, and Whole Earth Review, Winter issue.Google Scholar
  114. [114]
    R. L. Watrous and G. M. Kuhn. Induction of finite-state Languages using second-order recurrent networks. Neural Computation, 4:406-414, 1992.CrossRefGoogle Scholar
  115. [115]
    P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University, 1974.Google Scholar
  116. [116]
    P. J. Werbos. Generalization of backpropagation with application to a recurrent gas market model. Neural Networks, 1, 1988. Google Scholar
  117. [117]
    P. J. Werbos. Neural networks, system identification, and control in the chemical industries. In D. A. Sofge D. A. White, editor, Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches, pages 283-356. Thomson Learning, 1992.Google Scholar
  118. [118]
    M. A. Wiering, R. P. Salustowicz, and J. Schmidhuber. Reinforcement learning soccer teams with incomplete world models. Autonomous Robots, 7(1):77-88, 1999. CrossRefGoogle Scholar
  119. [119]
    D. Wierstra, F. J. Gomez, and J. Schmidhuber. Modeling systems with internal state using Evolino. In Proc. of the 2005 conference on genetic and evolutionary computation (GECCO), Washington, D. C., pages 1795-1802. ACM Press, New York, NY, USA, 2005. Got a GECCO best paper award.Google Scholar
  120. [120]
    J. Wiles and J. Elman. Learning to count without a counter: A case study of dynamics and activation landscapes in recurrent networks. In In Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society, pages pages 482 - 487, Cambridge, MA, 1995. MIT Press.Google Scholar
  121. [121]
    R. J. Williams. Complexity of exact gradient computation algorithms for recurrent neural networks. Technical Report Technical Report NU-CCS-89-27, Boston: Northeastern University, College of Computer Science, 1989.Google Scholar
  122. [122]
    R. J. Williams and J. Peng. An efficient gradient-based algorithm for online training of recurrent network trajectories. Neural Computation, 4:491-501, 1990. Google Scholar
  123. [123]
    B. M. Yamauchi and R. D. Beer. Sequential behavior and learning in evolved dynamical neural networks. Adaptive Behavior, 2(3):219-246, 1994. CrossRefGoogle Scholar
  124. [124]
    Xin Yao. A review of evolutionary artificial neural networks. International Journal of Intelligent Systems, 4:203-222, 1993. Google Scholar
  125. [125]
    S.J. Young and P.C Woodland. HTK Version 3.2: User, Reference and Programmer Manual, 2002.Google Scholar
  126. [126]
    Z. Zeng, R. Goodman, and P. Smyth. Discrete recurrent neural networks for grammatical inference. IEEE Transactions on Neural Networks, 5(2), 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jürgen Schmidhuber
    • 1
  1. 1.TU MunichGarching beiGermany

Personalised recommendations