Mechanisms Governing the Growth of Organic Oligophenylene “Needles” on Au Substrates

  • K. Hänel
  • C. Wóll
Part of the Materials Science book series (SSMATERIALS, volume 101)

Today, 50 years after the first introduction of the transistor inorganic semiconductors, most importantly Si and GaAs are still the materials of choice for producing high performance, fast semiconductor devices. In the past decade, however, organic materials are attracting an increasing amount of interests with regard to use them as active compounds in semiconductor devices. These applications generally do not aim at high-end applications such as very fast switches, instead the current interest aims at developing to establish low cost or plastic electronics. The most important application presently are radio frequency identification devices (RFID), which will be used to identify not only individual objects like luggage on an airport but will also be used to identify products, e.g., to the cashier in the supermarket. Soft, organic materials made of either polymers or large molecules are under intense investigation by an increasing number of groups in many countries. Since organic materials have already made their way to electronic applications, for example, in connection with organic light-emitting diodes, it is rather likely that the first commercial products employing organic materials as active component in an electronic device, like an organic field effect transistor (OFET) will be introduced fairly soon.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Witte, C. Wöll, J. Mater. Res. 19, 1889 (2004)CrossRefADSGoogle Scholar
  2. 2.
    F. Balzer, H.G. Rubahn, PhiuZ 36(1) (2005)Google Scholar
  3. 3.
    F. Balzer, H.G. Rubahn, Adv. Funct. Mater. 15, 17 (2005)CrossRefGoogle Scholar
  4. 4.
    F. Balzer, J. Beermann, S. Bozhevolnyi, A. Simonsen, H.G. Rubahn, Nano Lett. 3, 1311 (2003)CrossRefADSGoogle Scholar
  5. 5.
    F. Balzer, H.G. Rubahn, Surf. Sci. 548, 170 (2004)CrossRefADSGoogle Scholar
  6. 6.
    F. Quochi, F. Cordella, R. Orru, J. Communal, P. Verzeroli, A. Mura, G. Bongiovanni, A. Andreev, H. Sitter, N. Sariciftci, Appl. Phys. Lett. 84, 4454 (2004)CrossRefADSGoogle Scholar
  7. 7.
    S. Müllegger, I. Salzmann, R. Resel, G. Hlawacek, C. Teichert, A. Winkler, J. Chem. Phys. 121, 2272 (2004)PubMedCrossRefADSGoogle Scholar
  8. 8.
    G. Hlawacek, C. Teichert, S. Müllegger, R. Resel, A. Winkler, Synthetic Met. 146, 383 (2004)CrossRefGoogle Scholar
  9. 9.
    S. Müllegger, S. Mitsche, P. Pölt, K. Hänel, A. Birkner, C. Wöll, A. Winkler, Thin Solid Films 484, 408 (2005)CrossRefADSGoogle Scholar
  10. 10.
    S. Müllegger, O. Stranik, E. Zojer, A. Winkler, Appl. Surf. Sci. 221, 184 (2004)CrossRefADSGoogle Scholar
  11. 11.
    T. Sato, S. Kitamura, M. Iwatsuki, J. Vac. Sci. Technol. A 18, 960 (2000)CrossRefADSGoogle Scholar
  12. 12.
    S. Reiß, H. Krumm, A. Niklewski, V. Staemmler, C. Wöll, J. Chem. Phys. 116, 7704 (2002)CrossRefADSGoogle Scholar
  13. 13.
    H. Yanagi, T. Morikawa, Appl. Phys. Lett. 75, 187 (1999)CrossRefADSGoogle Scholar
  14. 14.
    N. Koch, G. Heimel, J. Wu, E. Zojer, R. Johnson, J.L. Brédas, K. Müllen, J. Rabe, Chem. Phys. Lett. 413, 390 (2005)CrossRefADSGoogle Scholar
  15. 15.
    P. Puschnig, C. Ambrosch-Draxl, Phys. Rev. B 60, 7891 (1999)CrossRefADSGoogle Scholar
  16. 16.
    K. Baker, A. Fratini, T. Resch, H. Knachel, W. Adams, E. Socci, B. Farmer, Polymer 34, 1571 (1993)CrossRefGoogle Scholar
  17. 17.
    Y. Delugeard, J. Desuche, J. Baudour, Acta Cryst. B 32, 702 (1976)CrossRefGoogle Scholar
  18. 18.
    G. 03, (Gaussian, Inc., Pittsburgh PA, 2003)Google Scholar
  19. 19.
    J. Stöhr, NEXAFS Spectroscopy, Springer Series in Surface Science, vol. 25 (Springer, Berlin Heidelberg New York, 1992)Google Scholar
  20. 20.
    S. Müllegger et al., To be publishedGoogle Scholar
  21. 21.
    K. Weiss, S. Gebert, M. Wühn, H. Wadepohl, C. Wöll, J. Vac. Sci. Technol. 16, 1017 (1998)CrossRefADSGoogle Scholar
  22. 22.
    G. Beernink, T. Strunskus, G. Witte, C. Wöll, Appl. Phys. Lett. 85, 398 (2004)CrossRefADSGoogle Scholar
  23. 23.
    S. Müllegger, A. Winkler, Surf. Sci. 600, 1290 (2006)CrossRefADSGoogle Scholar
  24. 24.
    K.F. Braun, S.W. Hla, Nano Lett. 5, 73 (2005)PubMedCrossRefADSGoogle Scholar
  25. 25.
    D. Käfer, L. Ruppel, G. Witte, C. Wöll, Phys. Rev. Lett. 95, 166602 (2005)PubMedCrossRefADSGoogle Scholar
  26. 26.
    A. Hauschild, K. Karki, B. Cowie, M. Rohlfing, F. Tautz, M. Sokolowski, Phys. Rev. Lett. 95, 209602 (2005)CrossRefADSGoogle Scholar
  27. 27.
    R. Rurali, N. Lorente, P. Ordejon, Phys. Rev. Lett. 95, 209601 (2005)PubMedCrossRefADSGoogle Scholar
  28. 28.
    P. Bagus, K. Hermann, C. Wöll, J. Chem. Phys. 123, 184109 (2005)PubMedCrossRefADSGoogle Scholar
  29. 29.
    P. Bagus, V. Staemmler, C. Wöll, Phys. Rev. Lett. 89, 096104 (2002)PubMedCrossRefADSGoogle Scholar
  30. 30.
    S. Müllegger, I. Salzmann, R. Resel, A. Winkler, Appl. Phys. Lett. 83, 4536 (2003)CrossRefADSGoogle Scholar
  31. 31.
    C.C.D.C. Mercury Software, (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • K. Hänel
    • 1
  • C. Wóll
    • 1
  1. 1.Physical Chemistry IRuhr-University BochumBochumGermany

Personalised recommendations