Music Composition Using Harmony Search Algorithm

  • Zong Woo Geem
  • Jeong-Yoon Choi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4448)

Abstract

Music pieces have been composed using a behavior-inspired evolutionary algorithm, harmony search (HS). The HS algorithm mimics behaviors of music players in an improvisation process, where each player produces a pitch based on one of three operations (random selection, memory consideration, and pitch adjustment) in order to find a better state of harmony which can be translated into a solution vector in the optimization process. When HS was applied to the organum (an early form of polyphonic music) composition, it could successfully compose harmony lines based on original Gregorian chant lines.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horner, A., Goldberg, D.E.: Genetic Algorithms and Computer-Assisted Music Composition. In: Proceedings of the International Computer Music Conference, pp. 437–441 (1991)Google Scholar
  2. 2.
    Ralley, D.: Genetic Algorithms as a Tool for Melodic Development. In: Proceedings of the International Computer Music Conference, pp. 501–502 (1995)Google Scholar
  3. 3.
    Biles, J.A.: GenJam in Perspective: A Tentative Taxonomy for GA Music and Art Systems. Leonardo 36(1), 43–45 (2003)CrossRefGoogle Scholar
  4. 4.
    Johnson, C.G., Cardalda, J.J.R.: Genetic Algorithms in Visual Art and Music. Leonardo 35(2), 175–184 (2002)CrossRefGoogle Scholar
  5. 5.
    Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.): EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611. Springer, Heidelberg (2003)Google Scholar
  6. 6.
    Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.): EvoWorkshops 2005. LNCS, vol. 3449. Springer, Heidelberg (2005)MATHGoogle Scholar
  7. 7.
    Geem, Z.W., Kim, J.H., Loganathan, G.V.: A New Heuristic Optimization Algorithm: Harmony Search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar
  8. 8.
    Geem, Z.W., Lee, K.S., Tseng, C.-L.: Harmony Search for Structural Design. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) pp. 651-652 (2005)Google Scholar
  9. 9.
    Geem, Z.W.: Optimal Cost Design of Water Distribution Networks using Harmony Search. Engineering Optimization 38(3), 259–280 (2006)CrossRefGoogle Scholar
  10. 10.
    Geem, Z.W., Tseng, C.-L., Park, Y.: Harmony Search for Generalized Orienteering Problem: Best Touring in China. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 741–750. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Kim, J.H., Geem, Z.W., Kim, E.S.: Parameter Estimation of the Nonlinear Muskingum Model using Harmony Search. Journal of the American Water Resources Association 37(5), 1131–1138 (2001)CrossRefGoogle Scholar
  12. 12.
    Geem, Z.W.: Improved Harmony Search from Ensemble of Music Players. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4251, pp. 86–93. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Kim, M., Noh, Y., Park, M., Yi, S., Hur, Y.: Listening and Learning A History of Western Music – vol. I, SimSeolDang, Seoul, South Korea (1995)Google Scholar
  14. 14.
    http://www.hydroteq.com/Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Zong Woo Geem
    • 1
  • Jeong-Yoon Choi
    • 2
  1. 1.Johns Hopkins University, Environmental Planning and Management Program, 729 Fallsgrove Drive #6133, Rockville, Maryland 20850USA
  2. 2.Washington Conservatory of Music, 3920 Alton Place NW, Washington, DC 20016USA

Personalised recommendations