Evolutionary GUIs for Sound Synthesis

  • James McDermott
  • Niall J. L. Griffith
  • Michael O’Neill
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4448)


This paper describes an experiment carried out to determine which, among several possible evolutionary and non-evolutionary sound synthesizer graphical user interfaces, is the most suitable for the task of matching a target sound. Results show that standard and new varieties of evolutionary interface are competitive with a standard non-evolutionary interface, achieving better results in some situations and worse in others. Subjects’ comments suggest a preference for a new type of evolutionary interface, presented here, which allows faster audition of the population, avoiding the need for time-consuming fitness evaluation of poor-quality sounds.


User Rate Evolutionary Interface Attribute Distance Target Sound Background Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Horner, A., Beauchamp, J., Haken, L.: Machine tongues XVI: Genetic algorithms and their application to FM matching synthesis. Computer Music Journal 17(4), 17–29 (1993)CrossRefGoogle Scholar
  2. 2.
    Garcia, R.A.: Growing sound synthesizers using evolutionary methods. In: Bilotta, E., Miranda, E.R., Pantano, P., Todd, P. (eds.) ECAL 2001. LNAI (LNCS), vol. 2159, Springer, Berlin Heidelberg New York (2001)Google Scholar
  3. 3.
    Mitchell, T.J., Sullivan, J.C.W.: Frequency modulation tone matching using a fuzzy clustering evolution strategy. In: Audio Engineering Society 118th Convention. (2005)Google Scholar
  4. 4.
    Riionheimo, J., Välimäki, V.: Parameter estimation of a plucked string synthesis model using a genetic algorithm with perceptual fitness calculation. EURASIP Journal on Applied Signal Processing 8, 791–805 (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Dahlstedt, P.: A MutaSynth in parameter space: interactive composition through evolution. Organised Sound 6(2), 121–124 (2001)CrossRefGoogle Scholar
  6. 6.
    Johnson, C.G.: Exploring sound-space with interactive genetic algorithms. Leonardo 36(1), 51–54 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Mandelis, J., Husbands, P.: Genophone: Evolving sounds and integral performance parameter mappings. In: EvoWorkshops. (2003)Google Scholar
  8. 8.
    Takagi, H.: Interactive evolutionary computation: Fusion of the capabilities of EC optimization and human evaluation. Proc. of the IEEE 89(9), 1275–1296 (2001)CrossRefGoogle Scholar
  9. 9.
    Bolton, S.: XSynth-DSSI (2005) , last viewed 2 March (2006)
  10. 10.
    McDermott, J., Griffith, N.J.L., O’Neill, M.: Evolutionary Computation Applied to Sound Synthesis. In: The Art of Artificial Evolution, Springer, Berlin Heidelberg New York (2006)Google Scholar
  11. 11.
    Beyer, H.G.: The Theory of Evolution Strategies. Springer, Berlin Heidelberg New York (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    McDermott, J., Griffith, N.J.L., O’Neill, M.: Timbral, perceptual, and statistical attributes for synthesized sound. In: Proc. of the International Computer Music Conference. (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • James McDermott
    • 1
  • Niall J. L. Griffith
    • 1
  • Michael O’Neill
    • 2
  1. 1.Dept. Computer Science and Information Systems, University of LimerickIreland
  2. 2.NCRA, University College DublinIreland

Personalised recommendations