Self-organizing Bio-inspired Sound Transformation

  • Marcelo Caetano
  • Jônatas Manzolli
  • Fernando Von Zuben
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4448)

Abstract

We present a time domain approach to explore a sound transformation paradigm for musical performance. Given a set of sounds containing a priori desired qualities and a population of agents interacting locally, the method generates both musical form and matter resulting from sonic trajectories. This proposal involves the use of bio-inspired algorithms, which possess intrinsic features of adaptive, self-organizing systems, as definers of generating and structuring processes of sound elements. Self-organization makes viable the temporal emergence of stable structures without an external organizing element. Regarding musical performance as a creative process that can be described using trajectories through the compositional space, and having the simultaneous emergence of musical matter and form resulting from the process itself as the final objective, the conception of a generative paradigm in computer music that does not contemplate a priori external organizing elements is the main focus of this proposal.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biles, J.A.: GenJam: A Genetic Algorithm for Generating Jazz Solos, In: Proceedings of the 1994 International Computer Music Conference (ICMC’94) pp. 131–137 (1994)Google Scholar
  2. 2.
    Blackwell, T.M., Bentley, P.: Improvised Music with Swarms. In: Proceedings of IEEE Congress on Evolutionary Computation (2002)Google Scholar
  3. 3.
    Blackwell, T., Young, M.: Swarm Granulator. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 399–408. Springer, Berlin Heidelberg New York (2004)CrossRefGoogle Scholar
  4. 4.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From natural to artificial syatems. Oxford University Press, New York (1999)MATHGoogle Scholar
  5. 5.
    Burnet, F.M.: The Clonal Selection Theory of Acquired Immunity. Cambridge University Press, Cambridge (1959)CrossRefGoogle Scholar
  6. 6.
    Burraston, D., Edmonds, E. A., Livingstone, D., Miranda, E.: Cellular Automata in MIDI based Computer Music. In: Proceedings of the International Computer Music Conference, pp. 71–78 (2004)Google Scholar
  7. 7.
    Caetano, M., Manzolli, J., Von Zuben, F.J.: Application of an Artificial Immune System in a Compositional Timbre Design Technique. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 389–403. Springer, Berlin Heidelberg New York (2005)CrossRefGoogle Scholar
  8. 8.
    Caetano, M., Manzolli, J., Von Zuben, F.J.: Interactive Control of Evolution Applied to Sound Synthesis. In: Markov, Z., Russel, I. (eds.) Proceedings of the 18th International Florida Artificial Intelligence Research Society (FLAIRS), Clearwater Beach, Florida, EUA, pp. 51–56 (2005 b)Google Scholar
  9. 9.
    Caetano, M., Manzolli, J., Von Zuben, F.J.: “Topological Self-Organizing Timbre Design Methodology Using a Kohonen’s Neural Network”. 10 Simpósio Brasileiro de Computação e Música, Belo Horizonte, Brazil (2005 c)Google Scholar
  10. 10.
    Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, Princeton, NJ (2001)MATHGoogle Scholar
  11. 11.
    Chen, C.J., Miikkulainen, R.: Creating Melodies with Evolving Recurrent Neural Networks, In: Proceedings of the International Joint Conference on Neural Networks (IJCNN-01) pp. 2241–2246 (2001)Google Scholar
  12. 12.
    de Castro, L.N., Timmis, J.I.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer-Verlag, London (2002)MATHGoogle Scholar
  13. 13.
    de Castro, L.N., Von Zuben, F.: aiNET: An Artificial Immune Network for Data Analysis, in Data Mining: A Heuristic Approach. In: Abbas, H., Sarker, R., Newton, C.: (eds.) Idea Group Publishing (2001)Google Scholar
  14. 14.
    Guéret, C., Monmarché, M., Slimane, M.: Ants can play music. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, Springer, Berlin Heidelberg New York (2004)Google Scholar
  15. 15.
    Kennedy, J.: Particle swarms: Optimization based on sociocognition. In: De Castro, L., Von Zuben, F.J.: (eds.) Recent Developments in Biologically Inspired Computing, Idea Group Publishing, ISBN:159140312X (2004)Google Scholar
  16. 16.
    Kohonen, T.: Self-Organizing Maps. Springer, Berlin Heidelberg New York (2000)MATHGoogle Scholar
  17. 17.
    Miranda, E.R.: Granular Synthesis of Sound by means of a Cellular Automaton. Leonardo 28(4), 297–300 (1995)CrossRefGoogle Scholar
  18. 18.
    Risset, J.C.: Computer Study of Trumpet Tones. Bell Telephone Laboratories, Murray Hill, N.J (1966)Google Scholar
  19. 19.
    Smalley, D.: Spectro-morphology and Structuring Processes, pp. 61–93. Macmillan, London (1990)Google Scholar
  20. 20.
    Von Foerster, H.: “On Self-Organizing Systems and Their Environments.”. In: Yovits, M.C., Cameron, S. (eds.) Self-Organizing Systems, pp. 31–50. Pergamon Press, London (1960)Google Scholar
  21. 21.
    Wishart, T.: On Sonic Art.Simon Emerson: Harwood Academic Publishers, ISBN 3-7186-5847-X (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Marcelo Caetano
    • 1
  • Jônatas Manzolli
    • 2
  • Fernando Von Zuben
    • 3
  1. 1.IRCAM-CNRS-STMS 1place Igor Stravinsky – Paris,F-75004France
  2. 2.NICS/DM/IA - University of Campinas – PO Box 6166Brazil
  3. 3.LBiC/DCA/FEEC – University of Campinas – PO Box 6101Brazil

Personalised recommendations