Bacterial Foraging Algorithm with Varying Population for Optimal Power Flow

  • M. S. Li
  • W. J. Tang
  • W. H. Tang
  • Q. H. Wu
  • J. R. Saunders
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4448)


This paper proposes a novel optimization algorithm, Bacterial Foraging Algorithm with Varying Population (BFAVP), to solve Optimal Power Flow (OPF) problems. Most of the conventional Evolutionary Algorithms (EAs) are based on fixed population evaluation, which does not achieve the full potential of effective search. In this paper, a varying population algorithm is developed from the study of bacterial foraging behavior. This algorithm, for the first time, explores the underlying mechanisms of bacterial chemotaxis, quorum sensing and proliferation, etc., which have been successfully merged into the varying-population frame. The BFAVP algorithm has been applied to the OPF problem and it has been evaluated by simulation studies, which were undertaken on an IEEE 30-bus test system, in comparison with a Particle Swarm Optimizer (PSO) [1].


Evolutionary algorithm Bacterial foraging algorithm Varying population Optimal power flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kennedy, J., Eberhart, R.C.: “Particle swarm optimization,”. In: IEEE international Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Press, NJ, New York (1995)Google Scholar
  2. 2.
    Carpentier, J.: “Contribution to the econimoc dispatch problem,”. Bull. Soc. Franc. Elect. 8, 431–447 (1962)Google Scholar
  3. 3.
    Alsac, O., Scott, B.: “Optimal load flow with steady state security,”. IEEE Trans. on Power Appara. Syst. PAS-93, 745–751 (1974)CrossRefGoogle Scholar
  4. 4.
    Bottero, M.H., Galiana, F.D., Fahmideh-Vojdani, A.R.: “Economic dispatch using the reduced Hessian,”. IEEE Trans. on Power Appara. Syst. PAS-101, 3679–3688 (1982)CrossRefGoogle Scholar
  5. 5.
    Reid, G.F., Hasdorf, A.R.: “Economic dispatch using quadratic programming,”. IEEE Trans. on Power Appara. Syst. PAS-92, 2015–2023 (1973)CrossRefGoogle Scholar
  6. 6.
    Stott, B., Hobson, E.: “Power system security control calculation using linear programming,”. IEEE Trans. on Power Appara. Syst. 97, 1713–1731 (1978)CrossRefGoogle Scholar
  7. 7.
    Momoh, J.A., Zhu, J.Z.: “Improved interior point method for OPF problems,”. IEEE Trans on Power Syst. 14, 1114–1120 (1999)CrossRefGoogle Scholar
  8. 8.
    Wei, H., Sasaki, H., Kubokawa, J., Yokoyama, R.: “IAn interior point nonlinear programming for optimal power flow problems with a novel structure,”. IEEE Trans on Power Syst. 13, 870–877 (1998)CrossRefGoogle Scholar
  9. 9.
    Bakirtzis, A.G., Biskas, P.N., Zoumas, C.E., Petridis, V.: “Optimal Power Flow by Enhanced Genetic Algorithm,”. IEEE Transactions on Power Systems 17(2), 229–236 (2002)CrossRefGoogle Scholar
  10. 10.
    Passino, K.M.: “Biomimicry of Bacterial Foraging for Distributed Optimization and Control,”. IEEE Control Systems Magazine 22(3), 52–67 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bar Tana, J., Howlett, B.J., Koshland, D.E.: “Flagellar formation in Escherichia coli electron transport mutants,”. Journal of Bacterial 130, 787–792 (1977)Google Scholar
  12. 12.
    Clerc, M., Kennedy, J.: “The particle swarm: Explosion, stability, and convergence in a multi-dimensional complex space,”. IEEE Trans. on Evolutionary Computation 6, 58–73 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • M. S. Li
    • 1
  • W. J. Tang
    • 1
  • W. H. Tang
    • 1
  • Q. H. Wu
    • 1
  • J. R. Saunders
    • 2
  1. 1.Department of Electrical Engineering and ElectronicsUK
  2. 2.School of Biological Sciences, The University of Liverpool, Liverpool L69 3GJU.K.

Personalised recommendations