Evolutionary Brain Computer Interfaces

  • Riccardo Poli
  • Caterina Cinel
  • Luca Citi
  • Francisco Sepulveda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4448)


We propose a BCI mouse and speller based on the manipulation of P300 waves in EEG signals. The 2–D motion of the pointer on the screen is controlled by directly combining the amplitudes of the output produced by a filter in the presence of different stimuli. This filter and the features to be combined within it are optimised by a GA.


Continuous Wavelet Transform Brain Computer Interface Mouse Cursor Mouse Pointer Speller System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beverina, F., Palmas, G., Silvoni, S., Piccione, F., Giove, S.: User adaptive BCIs: SSVEP and P300 based interfaces. PsychNology Journal 354, 331–354 (2003)Google Scholar
  2. 2.
    Cinel, C., Poli, R., Citi, L.: Possible sources of perceptual errors P300-based speller paradigm. Biomedizinische Technik, Proceedings of 2nd International BCI workshop and Training Course 49, 39–40 (2004)Google Scholar
  3. 3.
    Citi, L., Poli, R., Cinel, C., Sepulveda, F.: P300-based brain computer interface mouse with genetically-optimised analogue control. Technical Report CSM-451, Department of Computer Science, University of Essex (May 2006)Google Scholar
  4. 4.
    Citi, L., Poli, R., Sepulveda, F.: An evolutionary approach to feature selection and classification in P300-based BCI. Biomedizinische Technik, Proceedings of 2nd International BCI workshop and Training Course 49, 41–42 (2004)Google Scholar
  5. 5.
    Donchin, E., Coles, M.G.H.: Is the P300 a manifestation of context updating?. Behavioral and Brain Sciences 372, 355–372 (1988)Google Scholar
  6. 6.
    Donoghue, J.: Connecting cortex to machines: recent advances in brain interfaces. Nature Neuroscience 5, 1085–1088 (2002)CrossRefGoogle Scholar
  7. 7.
    Eshelman, L.J., Schaffer, J.D.: Real-Coded Genetic Algorithms and Interval Schemata. In: Whitley, L.D. (ed.) Foundations of Genetic Algorithms 2, Morgan Kaufmann Publishers, San Mateo, CA (1993)Google Scholar
  8. 8.
    Farwell, L.A., Donchin, E.: Talking off the top of your head: A mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology 70, 510–523 (1988)CrossRefGoogle Scholar
  9. 9.
    Polikoff, J.B., Bunnell, H.T., B. Jr, W.J.: Toward p300-based computer interface. In: Proc. Rehab. Eng. and Assistive Technology Society of North America (RESNA’95), pp. 178–180. RESNA PRESS, Arlington, Va (1995)Google Scholar
  10. 10.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clinical Neurophysiology 113(6), 767–791 (2002)CrossRefGoogle Scholar
  11. 11.
    Wolpaw, J.R., McFarland, D.J.: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proceedings of the National Academy of Sciences 101(51), 17849–17854 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Riccardo Poli
    • 1
  • Caterina Cinel
    • 2
  • Luca Citi
    • 1
    • 3
  • Francisco Sepulveda
    • 1
  1. 1.Department of Computer Science, University of EssexUK
  2. 2.Department of Psychology, University of EssexUK
  3. 3.IMT Institute for Advanced Studies, LuccaItaly

Personalised recommendations