Modeling the Shoot Apical Meristem in A. thaliana: Parameter Estimation for Spatial Pattern Formation

  • Tim Hohm
  • Eckart Zitzler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4447)

Abstract

Understanding the self-regulatory mechanisms controlling the spatial and temporal structure of multicellular organisms represents one of the major challenges in molecular biology. In the context of plants, shoot apical meristems (SAMs), which are populations of dividing, undifferentiated cells that generate organs at the tips of stems and branches throughout the life of a plant, are of particular interest and currently studied intensively. Here, one key goal is to identify the genetic regulatory network organizing the structure of a SAM and generating the corresponding spatial gene expression patterns.

This paper addresses one step in the design of SAM models based on ordinary differential equations (ODEs): parameter estimation for spatial pattern formation. We assume that the topology of the genetic regulatory network is given, while the parameters of an ODE system need to be determined such that a particular stable pattern over the SAM cell population emerges. To this end, we propose an evolutionary algorithm-based approach and investigate different ways to improve the efficiency of the search process. Preliminary results are presented for the Brusselator, a well-known reaction-diffusion system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature review. Journal of Computational Biology 9(1), 67–103 (2002)CrossRefGoogle Scholar
  2. 2.
    Gierer, A.: Regeneration of hydra from reaggregated cells. Nature New Biology 239, 98–101 (1972)CrossRefGoogle Scholar
  3. 3.
    Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Conf. on Evolutionary Computation, pp. 312–317. IEEE Computer Society Press, Los Alamitos (1996)Google Scholar
  4. 4.
    Hansen, N., Ostermeier, A.: Completely Derandomized Self-Adaptation in Evolution Strategies. Evolutionary Computation 9(2), 159–195 (2001)CrossRefGoogle Scholar
  5. 5.
    Hunding, A., Kauffman, S., Goodwin, B.: Drosophila Segmentation: Supercomputer Simulation of Prepattern Hierarchy. J. theor. Biol. 145, 369–384 (1990)CrossRefGoogle Scholar
  6. 6.
    Jönsson, H. et al.: Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem. Bioinformatics 21, i232–i240 (2005)CrossRefGoogle Scholar
  7. 7.
    Meinhardt, H.: The algorithmic beauty of sea shells. Springer, Heidelberg (1995)Google Scholar
  8. 8.
    Mendes, P., Kell, D.B.: Non-linear optimization of biochemical pathways: applications to metabolic engeneering and parameter estimation. Bioinformatics 14(10), 869–883 (1998)CrossRefGoogle Scholar
  9. 9.
    Moles, C.G., Mendes, P., Banga, J.R.: Parameter estimation in biochemical pathways: A comparison of global optimization methods. Genome Research 13(11), 2467–2474 (2003)CrossRefGoogle Scholar
  10. 10.
    Prigogine, I., Lefever, R.: Symmetry Breaking Instabilities in Dissipative Systems. J. chem. Phys. 48, 1695–1700 (1968)CrossRefGoogle Scholar
  11. 11.
    Tsai, K.-Y., Wang, F.-S.: Evolutionary optimization with data collocation for reverse engeneering of biological networks. Bioinformatics 21(7), 1180–1188 (2005)CrossRefGoogle Scholar
  12. 12.
    Turing, A.: The chemical basis for morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952)CrossRefGoogle Scholar
  13. 13.
    Voit, E.O.: Computational Analysis of Biochemical Systems. Cambridge University Press, Cambridge (2000)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Tim Hohm
    • 1
  • Eckart Zitzler
    • 1
  1. 1.Computer Engineering (TIK), ETH Zurich 

Personalised recommendations