Detection and Visualization of Subspace Cluster Hierarchies

  • Elke Achtert
  • Christian Böhm
  • Hans-Peter Kriegel
  • Peer Kröger
  • Ina Müller-Gorman
  • Arthur Zimek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4443)

Abstract

Subspace clustering (also called projected clustering) addresses the problem that different sets of attributes may be relevant for different clusters in high dimensional feature spaces. In this paper, we propose the algorithm DiSH (Detecting Subspace cluster Hierarchies) that improves in the following points over existing approaches: First, DiSH can detect clusters in subspaces of significantly different dimensionality. Second, DiSH uncovers complex hierarchies of nested subspace clusters, i.e. clusters in lower-dimensional subspaces that are embedded within higher-dimensional subspace clusters. These hierarchies do not only consist of single inclusions, but may also exhibit multiple inclusions and thus, can only be modeled using graphs rather than trees. Third, DiSH is able to detect clusters of different size, shape, and density. Furthermore, we propose to visualize the complex hierarchies by means of an appropriate visualization model, the so-called subspace clustering graph, such that the relationships between the subspace clusters can be explored at a glance. Several comparative experiments show the performance and the effectivity of DiSH.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proc. SIGMOD (1998)Google Scholar
  2. 2.
    Cheng, C.H., Fu, A.W.C., Zhang, Y.: Entropy-based subspace clustering for mining numerical data. In: Proc. KDD, pp. 84–93 (1999)Google Scholar
  3. 3.
    Kailing, K., Kriegel, H.P., Kröger, P.: Density-connected subspace clustering for high-dimensional data. In: Proc. SDM (2004)Google Scholar
  4. 4.
    Kriegel, H.P., Kröger, P., Renz, M., Wurst, S.: A generic framework for efficient subspace clustering of high-dimensional data. In: Proc. ICDM (2005)Google Scholar
  5. 5.
    Aggarwal, C.C., Procopiuc, C.M., Wolf, J.L., Yu, P.S., Park, J.S.: Fast algorithms for projected clustering. In: Proc. SIGMOD (1999)Google Scholar
  6. 6.
    Procopiuc, C.M., Jones, M., Agarwal, P.K., Murali, T.M.: A Monte Carlo algorithm for fast projective clustering. In: Proc. SIGMOD (2002)Google Scholar
  7. 7.
    Böhm, C., Kailing, K., Kriegel, H.P., Kröger, P.: Density connected clustering with local subspace preferences. In: Proc. ICDM (2004)Google Scholar
  8. 8.
    Achtert, E., Böhm, C., Kriegel, H.-P., Kröger, P., Müller-Gorman, I., Zimek, A.: Finding Hierarchies of Subspace Clusters. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 446–453. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: Ordering points to identify the clustering structure. In: Proc. SIGMOD (1999)Google Scholar
  10. 10.
    Yang, J., Wang, W., Wang, H., Yu, P.S.: Delta-Clusters: Capturing subspace correlation in a large data set. In: Proc. ICDE (2002)Google Scholar
  11. 11.
    Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by pattern similarity in large data sets. In: Proc. SIGMOD (2002)Google Scholar
  12. 12.
    Böhm, C., Kailing, K., Kröger, P., Zimek, A.: Computing clusters of correlation connected objects. In: Proc. SIGMOD (2004)Google Scholar
  13. 13.
    Aggarwal, C.C., Yu, P.S.: Finding generalized projected clusters in high dimensional space. In: Proc. SIGMOD (2000)Google Scholar
  14. 14.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. SIGMOD (1994)Google Scholar
  15. 15.
    Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive Identification of Cell Cycle-Regulated Genes of the Yeast Saccharomyces Cerevisiae by Microarray Hybridization.. Molecular Biolology of the Cell 9, 3273–3297 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Elke Achtert
    • 1
  • Christian Böhm
    • 1
  • Hans-Peter Kriegel
    • 1
  • Peer Kröger
    • 1
  • Ina Müller-Gorman
    • 1
  • Arthur Zimek
    • 1
  1. 1.Institute for Informatics, Ludwig-Maximilians-Universität MünchenGermany

Personalised recommendations