An Efficient Method for Dynamic Analysis of Gene Regulatory Networks and in silico Gene Perturbation Experiments

  • Abhishek Garg
  • Ioannis Xenarios
  • Luis Mendoza
  • Giovanni DeMicheli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4453)

Abstract

With the increasing availability of experimental data on gene-gene and protein-protein interactions, modeling of gene regulatory networks has gained a special attention lately. To have a better understanding of these networks it is necessary to capture their dynamical properties, by computing its steady states. Various methods have been proposed to compute steady states but almost all of them suffer from the state space explosion problem with the increasing size of the networks. Hence it becomes difficult to model even moderate sized networks using these techniques. In this paper, we present a new representation of gene regulatory networks, which facilitates the steady state computation of networks as large as 1200 nodes and 5000 edges. We benchmarked and validated our algorithm on the T helper model from [8] and performed in silico knock out experiments: showing both a reduction in computation time and correct steady state identification.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans. on Computers 35, 677–691 (1986)CrossRefMATHGoogle Scholar
  2. 2.
    Burch, J.R., Clarke, E.M., Long, D.E., MacMillan, K.L., Dill, D.L.: Symbolic Model Checking for Sequential Circuit Verification. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 13, 401–424 (1994)CrossRefGoogle Scholar
  3. 3.
    Touati, H.J, Savoj, H., Lin, B., Brayton, R.K., Sangiovanni-Vincentelli, A.: Implicit state enumeration of finite-state machines using BDDs. In: Proc. of ICCAD (1990)Google Scholar
  4. 4.
    Agnello, D., Lankford, C.S.R., Bream, J., Morinobu, A., Gadina, M., OShea, J., Frucht, D.M.: Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights. J. Clin. Immun. 23, 147–162 (2003)CrossRefGoogle Scholar
  5. 5.
    Bergmann, C., van Hemmen, J.L.: Th1 or Th2: how an appropriate T helper response can be made. Bull. Math. Bio. 63, 405–430 (2001)CrossRefGoogle Scholar
  6. 6.
    Krueger, G.R., Marshall, G.R., Junker, U., Schroeder, H., Buja, L.M., Wang, G.: Growth factors, cytokines, chemokines and neuropeptides in the modeling of T-cells. In Vivo 16, 365–586 (2002)Google Scholar
  7. 7.
    Mendoza, L.: A network model for the control of the differentiation process in Th cells. BioSystems 84, 101–114 (2006)CrossRefGoogle Scholar
  8. 8.
    Mendoza, L., Xenarios, I.: A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theoretical Biology and Medical Modelling 3 (2006)Google Scholar
  9. 9.
    Mendoza, L., Thieffry, D., Alvarez-Buylla, E.R.: Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis. BioInfo. 15, 593–606 (1999)CrossRefGoogle Scholar
  10. 10.
    Murphy, K.M., Reiner, S.L.: The lineage decisions on helper T cells. Nat. Rev. Immun. 2, 933–944 (2002)CrossRefGoogle Scholar
  11. 11.
    Szabo, S.J., Sullivan, B.M., Peng, S.L., Glimcher, L.H.: Molecular mechanisms regulating Th1 immune responses. Ann. Rev. Immun. 21, 713–758 (2003)CrossRefGoogle Scholar
  12. 12.
    Thieffry, D., Sánchez, L.: Alternative epigenetic states understood in terms of specific regulatory structures. Ann. N.Y. Acad. Sci. 981, 135–153 (2002)CrossRefGoogle Scholar
  13. 13.
    Sánchez, L., Thieffry, D.: Segmenting the fly embryo: a logical analysis of the pair-rule cross-regulatory module. Jour. Theo. Bio. 224, 517–537 (2003)CrossRefGoogle Scholar
  14. 14.
    Thomas, R.: Regulatory networks seen as asynchronous automata: a logical description. Jour. Theo. Bio. 153, 1–23 (1991)CrossRefGoogle Scholar
  15. 15.
    Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regulatory networks-I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biology 57, 247–276 (1995)MATHGoogle Scholar
  16. 16.
    Weisbuch, G., DeBoer, R.J., Perelson, A.S.: Localized memories in idiotypic networks. Jour. Theo. Bio. 146, 483–499 (1990)CrossRefGoogle Scholar
  17. 17.
    Yates, A., Bergmann, C., van Hemmen, J.L., Stark, J., Callard, R.: Cytokine-modulated regulation of helper T cell populations. Jour. Theo. Bio. 206, 539–560 (2000)CrossRefGoogle Scholar
  18. 18.
    Xie, A., Beerel, P.A.: Efficient State Classification of Finite State Markov Chains. In: Proc. of DAC (1998)Google Scholar
  19. 19.
    Hachtel, G., Macii, E., Pardo, A., Somenzi, F.: Markovian analysis of large finite state machines. IEEE Trans. on CAD 15, 1479–1493 (1996)Google Scholar
  20. 20.
    Somenzi, F.: CUDD: CU Decision Diagram Package Release 2.4.1. University of Colorado at Boulder (2005)Google Scholar
  21. 21.
    Brayton, R.K., Sangiovanni-Vincentelli, A.L., McMullen, C.T., Hachtel, G.D.: Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, Dordrecht (1984)MATHGoogle Scholar
  22. 22.
    DeMicheli, G.: Synthesis and Optimization of Digital Circuits. McGraw-Hill Higher Education, New York (1994)Google Scholar
  23. 23.
    Burch, J.R., Clarke, E.M., MacMillan, K.L., Dill, D.L., Hwang, L.H.: Symbolic Model Checking: 1020 States and Beyond. In: Proc. of the IEEE Symp. on Logic in Computer Science, IEEE Computer Society Press, Los Alamitos (1990)Google Scholar
  24. 24.
    Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, S.K., Tasiran, S.: MOCHA: Modularity in Model Checking. In: CAV (1998)Google Scholar
  25. 25.
    Diehl, S., Anguita, J., Hoffmeyer, A., Zapton, T., Ihle, J.N., Fikrig, E., Rincón, M.: Inhibition of Th1 differentiation by IL-6 is mediated by SOCS1. Immunity 13, 805–815 (2000)CrossRefGoogle Scholar
  26. 26.
    Tang, H., Sharp, G.C., Peterson, K.P., Braley-Mullen, H.: IFN-g-deficient mice develop severe granulomatous experimental autoimmune thyroiditis with eosinophil infiltration in thyroids. Jour. Immun. 160, 5105–5112 (1998)Google Scholar
  27. 27.
    Bernot, G., Comet, J.P., Richard, A., Guespin, J.: Application of formal methods to biological regulatory networks: extending Thomas’ asynchronous logical approach with temporal logic. Jour. Theo. Bio. 229, 339–347 (2004)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Devloo, V., Hansen, P., Labb, M.: Identification Of All Steady States In Large Biological Systems By Logical Analysis. Bull. Math. Bio. 65, 1025–1051 (2003)CrossRefGoogle Scholar
  29. 29.
    Chabrier, N., Fages, F., Soliman, S.: BIOCHAM. In: Proc. of CMSB (May 2004)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Abhishek Garg
    • 1
  • Ioannis Xenarios
    • 1
  • Luis Mendoza
    • 2
  • Giovanni DeMicheli
    • 1
  1. 1.Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, Merck Serono, GenevaSwitzerland
  2. 2.Instituto de Investigaciones Biomédicas, UNAMMexico

Personalised recommendations