Beyond Galled Trees - Decomposition and Computation of Galled Networks

  • Daniel H. Huson
  • Tobias H. Klöpper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4453)


Reticulate networks are a type of phylogenetic network that are used to represent reticulate evolution involving hybridization, horizontal gene transfer or recombination. The simplest form of these networks are galled trees, in which all reticulations are independent of each other. This paper introduces a more general class of reticulate networks, that we call galled networks, in which reticulations are not necessarily independent, but may overlap in a tree-like manner. We prove a Decomposition Theorem for these networks that has important consequences for their computation, and present a fixed-parameter-tractable algorithm for computing such networks from trees or binary sequences. We provide a robust implementation of the algorithm and illustrate its use on two biological datasets, one based on a set of three gene-trees and the other based on a set of binary characters obtained from a restriction site map.


Binary Sequence Phylogenetic Network Tree Edge Binary Character Ancestral Recombination Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bandelt, H.J., Dress, A.W.M.: A canonical decomposition theory for metrics on a finite set. Advances in Mathematics 92, 47–105 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Huson, D.H., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23, 254–267 (2006), Software available from: CrossRefGoogle Scholar
  3. 3.
    Sang, T., Zhong, Y.: Testing hybrization hypotheses based on incongruent gene trees. System. Biol. 49, 422–424 (2000)CrossRefGoogle Scholar
  4. 4.
    Linder, C.R., Rieseberg, L.H.: Reconstructing patterns of reticulate evolution in plants. Am. J. Bot. 91, 1700–1708 (2004)CrossRefGoogle Scholar
  5. 5.
    Nakhleh, L., Warnow, T., Linder, C.R.: Reconstructing reticulate evolution in species - theory and practice. In: Proceedings of the Eighth International Conference on Research in Computational Molecular Biology (RECOMB), pp. 337–346 (2004)Google Scholar
  6. 6.
    Huson, D., Kloepper, T., Lockhart, P., Steel, M.: Reconstruction of reticulate networks from gene trees. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P., Waterman, M. (eds.) Research in Computational Molecular Biology. LNCS (LNBI), vol. 3500, pp. 233–249. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Bordewich, M., Semple, C.: Computing the minimum number of hybridisation events for a consistent evolutionary history (in press, 2006)Google Scholar
  8. 8.
    Hallett, M., Largergren, J., Tofigh, A.: Simultaneous identification of duplications and lateral transfers. In: Proceedings of the Eight International Conference on Research in Computational Molecular Biology (RECOMB), pp. 347–356 (2004)Google Scholar
  9. 9.
    Hudson, R.R.: Properties of the neutral allele model with intergenic recombination. Theoretical Population Biology 23, 183–201 (1983)zbMATHCrossRefGoogle Scholar
  10. 10.
    Hein, J.: Reconstructing evolution of sequences subject to recombination using parsimony. Math. Biosci., 185–200 (1990)Google Scholar
  11. 11.
    Griffiths, R.C., Marjoram, P.: Ancestral inference from samples of DNA sequences with recombination. J. Computational Biology 3, 479–502 (1996)CrossRefGoogle Scholar
  12. 12.
    Gusfield, D., Eddhu, S., Langley, C.: Efficient reconstruction of phylogenetic networks with constrained recombination. In: Proceedings of the IEEE Computer Society Conference on Bioinformatics, p. 363. IEEE, Los Alamitos (2003)Google Scholar
  13. 13.
    Song, Y., Hein, J.: Parsimonious reconstruction of sequence evolution and haplotype blocks: Finding the minimum number of recombination events. In: Proceedings of the Workshop on Algorithms in Bioinformatics, pp. 287–302 (2003)Google Scholar
  14. 14.
    Gusfield, D., Eddhu, S., Langley, C.: The fine structure of galls in phylogenetic networks. INFORMS J. of Computing, Special Issue on Computational Biology 16, 459–469 (2004)MathSciNetGoogle Scholar
  15. 15.
    Song, Y., Hein, J.: On the minimum number of recombination events in the evolutionary history of DNA sequences. J. Math. Biol. 48, 160–186 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Gusfield, D., Bansal, V.: A fundamental decomposition theory for phylogenetic networks and incompatible characters. In: Proceedings of the Ninth International Conference on Research in Computational Molecular Biology (RECOMB), pp. 217–232 (2005)Google Scholar
  17. 17.
    Huson, D., Kloepper, T.: Computing recombination networks from binary sequences. Bioinformatics 21, ii159–ii165. ECCB (2005)CrossRefGoogle Scholar
  18. 18.
    Song, Y., Hein, J.: Constructing minimal ancestral recombination graphs. J. Comp. Biol. 12, 147–169 (2005)CrossRefGoogle Scholar
  19. 19.
    Lyngsø, R.B., Song, Y.S., Hein, J.: Minimum recombination histories by branch and bound. In: WABI, pp. 239–250 (2005)Google Scholar
  20. 20.
    Baroni, M., Semple, C., Steel, M.A.: A framework for representing reticulate evolution. Annals of Combinatorics (In press)Google Scholar
  21. 21.
    Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. Journal of Computational Biology 8, 69–78 (2001)CrossRefGoogle Scholar
  22. 22.
    Pryor, B.M., Bigelow, D.M.: Molecular characterization of Embellisia and Nimbya species and their relationship to Alternaria, Ulocladium and Stemphylium. Mycologia 95, 1141–1154 (2003)CrossRefGoogle Scholar
  23. 23.
    Kumar, A., Black, W., Rai, K.: An estimate of phylogenetic relationships among culicine mosquitoes using a restriction map of the rDNA cistron. Insect Molecular Biology 7, 367–373 (1998)CrossRefGoogle Scholar
  24. 24.
    Kimura, M.: The number of heterozygous nucleotide sites maintained in a finite population due to the steady flux of mutations. Genetics 61, 893–903 (1969)Google Scholar
  25. 25.
    Dress, A.W.M., Huson, D.H.: Constructing splits graphs. IEEE/ACM Transactions in Computational Biology and Bioinformatics 1, 109–115 (2004)CrossRefGoogle Scholar
  26. 26.
    Sanderson, M.J., Donoghue, M.J., Piel, W., Eriksson, T.: Treebase: a prototype database of phylogenetic analyses and an interactive tool for browsing the phylogeny of life. Amer. Jour. Bot. 81, 183 (1994)CrossRefGoogle Scholar
  27. 27.
    Huson, D., Steel, M., Whitfield, J.: Reducing distortion in phylogenetic networks. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 150–161. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Daniel H. Huson
    • 1
  • Tobias H. Klöpper
    • 1
  1. 1.Center for Bioinformatics (ZBIT), Tübingen University, Sand 14, 72076 TübingenGermany

Personalised recommendations