Advertisement

Self-Generated-Certificate Public Key Encryption Without Pairing

  • Junzuo Lai
  • Weidong Kou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4450)

Abstract

Certificateless Public Key Cryptography (CL-PKC) has very appealing features, namely it does not require any public key certification (cf. traditional Public Key Cryptography) nor having key escrow problem (cf. Identity-Based Cryptography). However, it does suffer to the Denial-of-Decryption (DoD) Attack called by Liu and Au [1], as its nature is similar to the well known Denial-of-Service (DoS) Attack. Based on CL-PKC, they introduced a new paradigm called Self-Generated-Certificate Public Key Cryptography (SGC-PKC) that captured the DoD Attack and proposed a first scheme derived from a novel application of Water’s Identity-Based Encryption scheme. In this paper, we propose a new SGC-PKE scheme that does not depend on the bilinear pairings, which make it be more efficient and more short public keys than Liu and Au’s scheme. More importantly, our scheme reaches Girault’s trusted level 3 (cf. Girault’s trusted level 2 of Liu and Au’s scheme), the same level as is enjoyed in a traditional PKI.

Keywords

Certificateless Public Key Cryptography Self-Generated-Certificate Public Key Cryptography Self-Certified-Key 

References

  1. 1.
    Liu, J.K., Au, M.H.: Self-Generated-Certificate Public Key Cryptosystem. Cryptology ePrint Archive, Report 2006/194 (2006), http://eprint.iacr.org/2006/194
  2. 2.
    Al-Riyami, S.S., Paterson, K.: Certificateless public key cryptography. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003)Google Scholar
  3. 3.
    Al-Riyami, S.S., Paterson, K.: Certificateless public key cryptography. Cryptology ePrint Archive, Report 2003/126 (2003), http://eprint.iacr.org/2003/126
  4. 4.
    Baek, J., Safavi-Naini, R., Susilo, W.: Certificateless public key encryption without pairing. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 134–148. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Bentahar, K., Farshim, P., Malone-Lee, J.: Generic constructions of identity-based and certificateless KEMs. Cryptology ePrint Archive, Report 2005/058 (2005), http://eprint.iacr.org/2005/058
  6. 6.
    Libert, B., Quisquater, J.: On constructing certificateless cryptosystems from identity based encryption. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 474–490. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Yum, D.H., Lee, P.J.: Generic construction of certificateless encryption. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, J.-L. (eds.) Current Topics in Artificial Intelligence. LNCS (LNAI), vol. 3040, pp. 802–811. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Shi, Y., Li, J.: Provable efficient certificateless public key encryption. Cryptology ePrint Archive, Report 2005/287 (2005), http://eprint.iacr.org/2005/287
  9. 9.
    Cheng, Z., Comley, R.: Efficient certificateless public key encryption. Cryptology ePrint Archive, Report 2005/012 (2005), http://eprint.iacr.org/2005/012
  10. 10.
    Girault, M.: Self-certified public keys. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991)Google Scholar
  11. 11.
    Petersen, H., Horster, P.: Self-certified keys - concepts and applications. In: 3rd Int. Conference on Communications and Multimedia Security, pp. 102–116. Chapman and Hall, Boca Raton (1997)Google Scholar
  12. 12.
    Lee, B., Kim, K.: Self-Certificate: PKI using Self-Certified Key. In: Proc. of Conference on Information Security and Cryptology 2000, Vol. 10, No. 1, pp. 65-73 (2000)Google Scholar
  13. 13.
    Shamir, A.: Identity-based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  14. 14.
    Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In: ACM CCCS ’93, pp. 62–73. ACM, New York (1993)Google Scholar
  15. 15.
    Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161–174 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996)Google Scholar
  17. 17.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Junzuo Lai
    • 1
  • Weidong Kou
    • 2
  1. 1.Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030China
  2. 2.School of Computer Science and Technology, Xi Dian University, Xi’an 710071China

Personalised recommendations