Verifiable Shuffle of Large Size Ciphertexts

  • Jens Groth
  • Steve Lu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4450)

Abstract

A shuffle is a permutation and rerandomization of a set of ciphertexts. Among other things, it can be used to construct mix-nets that are used in anonymization protocols and voting schemes. While shuffling is easy, it is hard for an outsider to verify that a shuffle has been performed correctly. We suggest two efficient honest verifier zero-knowledge (HVZK) arguments for correctness of a shuffle. Our goal is to minimize round-complexity and at the same time have low communicational and computational complexity.

The two schemes we suggest are both 3-move HVZK arguments for correctness of a shuffle. We first suggest a HVZK argument based on homomorphic integer commitments, and improve both on round complexity, communication complexity and computational complexity in comparison with state of the art. The second HVZK argument is based on homomorphic commitments over finite fields. Here we improve on the computational complexity and communication complexity when shuffling large ciphertexts.

Keywords

Shuffle homomorphic commitment homomorphic encryption mix-net honest verifier zero-knowledge 

References

  1. [Abe99]
    Abe, M.: Mix-networks on permutation networks. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 258–273. Springer, Heidelberg (1999)Google Scholar
  2. [AH01]
    Abe, M., Hoshino, F.: Remarks on mix-network based on permutation networks. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 317–324. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. [CDS94]
    Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Vardi, M.Y., Gottlob, G. (eds.) ICDT 1995. LNCS, vol. 893, pp. 174–187. Springer, Heidelberg (1995)Google Scholar
  4. [DF02]
    Damgård, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. [ElG84]
    El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  6. [FO97]
    Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)Google Scholar
  7. [FS01]
    Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. [Fur05]
    Furukawa, J.: Efficient and verifiable shuffling and shuffle-decryption. IEICE Transactions 88-A(1), 172–188 (2005)Google Scholar
  9. [GL07]
    Groth, J., Lu, S.: Comparison of shuffle arguments (2007), http://www.brics.dk/~jg/ShuffleComparisons.xls
  10. [GQ88]
    Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to security microprocessor minimizing both transmission and memory. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988)Google Scholar
  11. [Gro03]
    Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. [Gro05a]
    Groth, J.: Cryptography in subgroups of ℤ . In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 50–65. Springer, Heidelberg (2005)Google Scholar
  13. [Gro05b]
    Groth, J.: A verifiable secret shuffle of homomorphic encryptions. Cryptology ePrint Archive, Report 2005/246 (2005), http://eprint.iacr.org/
  14. [Nef01]
    Neff, A.C.: A verifiable secret shuffle and its application to e-voting. In: CCS ’01, pp. 116–125 (2001), Full paper available at http://www.votehere.net/vhti/documentation/egshuf.pdf
  15. [NSNK04]
    Nguyen, L., Safavi-Naini, R., Kurosawa, K.: Verifiable shuffles: A formal model and a paillier-based efficient construction with provable security. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 61–75. Springer, Heidelberg (2004)Google Scholar
  16. [NSNK05]
    Nguyen, L., Safavi-Naini, R., Kurosawa, K.: A provably secure and effcient verifiable shuffle based on a variant of the paillier cryptosystem. Journal of Universal Computer Science 11(6), 986–1010 (2005)MathSciNetGoogle Scholar
  17. [OT04]
    Onodera, T., Tanaka, K.: A verifiable secret shuffle of paillier’s encryption scheme. Tokyo Institute of Technology, research report C-193 (2004)Google Scholar
  18. [OU98]
    Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  19. [Pai99]
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–239. Springer, Heidelberg (1999)Google Scholar
  20. [PBD05]
    Peng, K., Boyd, C., Dawson, E.: Simple and efficient shuffling with provable correctness and ZK privacy. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 188–204. Springer, Heidelberg (2005)Google Scholar
  21. [Ped91]
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  22. [Sch91]
    Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptology 4(3), 161–174 (1991)MATHCrossRefMathSciNetGoogle Scholar
  23. [WG06]
    Wikström, D., Groth, J.: An adaptively secure mix-net without erasures. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 276–287. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. [Wik05a]
    Wikström, D.: A sender verifiable mix-net and a new proof of a shuffle. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 273–292. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. [Wik05b]
    Wikström, D.: A sender verifiable mix-net and a new proof of a shuffle. Cryptology ePrint Archive, Report 2005/137 (2005), http://eprint.iacr.org/
  26. [Wik06]
    Wikström, D.: Private Communication (2006)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Jens Groth
    • 1
  • Steve Lu
    • 2
  1. 1.UCLA, Computer Science Department 
  2. 2.UCLA, Math Department 

Personalised recommendations