Advertisement

Practical and Secure Solutions for Integer Comparison

  • Juan Garay
  • Berry Schoenmakers
  • José Villegas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4450)

Abstract

Yao’s classical millionaires’ problem is about securely determining whether x > y, given two input values x,y, which are held as private inputs by two parties, respectively. The output x > y becomes known to both parties.

In this paper, we consider a variant of Yao’s problem in which the inputs x,y as well as the output bit x > y are encrypted. Referring to the framework of secure n-party computation based on threshold homomorphic cryptosystems as put forth by Cramer, Damgård, and Nielsen at Eurocrypt 2001, we develop solutions for integer comparison, which take as input two lists of encrypted bits representing x and y, respectively, and produce an encrypted bit indicating whether x > y as output. Secure integer comparison is an important building block for applications such as secure auctions.

In this paper, our focus is on the two-party case, although most of our results extend to the multi-party case. We propose new logarithmic-round and constant-round protocols for this setting, which achieve simultaneously very low communication and computational complexities. We analyze the protocols in detail and show that our solutions compare favorably to other known solutions.

Keywords

Millionaires’ problem secure multi-party computation homomorphic encryption 

References

  1. [BK04]
    Blake, I., Kolesnikov, V.: Strong conditional oblivious transfer and computing on intervals. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 515–529. Springer, Heidelberg (2004)Google Scholar
  2. [Bra06]
    Brandt, F.: Efficient cryptographic protocol design based on distributed El Gamal encryption. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 32–47. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. [CDN01]
    Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. [CDS94]
    Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  5. [DFK+06]
    Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. [DN00]
    Damgård, I., Nielsen, J.: Improved non-committing encryption schemes based on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 433–451. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. [DN03]
    Damgård, I., Nielsen, J.B.: Universally composable efficient multiparty computation from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)Google Scholar
  8. [DiC00]
    Di Crescenzo, G.: Private Selective Payment Protocols. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 72–89. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. [Fis01]
    Fischlin, M.: A cost-effective pay-per-multiplication comparison method for millionaires. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 457–471. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. [GMY03]
    Garay, J., MacKenzie, P., Yang, K.: Strengthening zero-knowledge protocols using signatures. In: Biham, E. (ed.) Advances in Cryptology – EUROCRPYT 2003. LNCS, vol. 2656, pp. 177–194. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. [Gro03]
    Groth, J.: A verifable secret shuffle of homomorphic encryptions. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. [Knu97]
    Knuth, D.E.: The Art of Computer Programming, vol. 1: Fundamental Algorithms, 3rd edn. Addison-Wesley, Reading (1997)zbMATHGoogle Scholar
  13. [LT05]
    Lin, H., Tzeng, W.: An efficient solution to the millionaires’ problem based on homomorphic encryption. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 456–466. Springer, Heidelberg (2005)Google Scholar
  14. [SK95]
    Sako, K., Kilian, J.: Receipt-free mix-type voting scheme—a practical solution to the implementation of a voting booth. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403. Springer, Heidelberg (1995)Google Scholar
  15. [ST04]
    Schoenmakers, B., Tuyls, P.: Practical two-party computation based on the conditional gate. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 119–136. Springer, Heidelberg (2004)Google Scholar
  16. [ST06]
    Schoenmakers, B., Tuyls, P.: Efficient binary conversion for Paillier encryptions. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 522–537. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. [Yao82]
    Yao, A.: Protocols for secure computations. In: Proc. 23rd IEEE Symposium on Foundations of Computer Science (FOCS ’82), pp. 160–164. IEEE Computer Society Press, Los Alamitos (1982)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Juan Garay
    • 1
  • Berry Schoenmakers
    • 2
  • José Villegas
    • 2
  1. 1.Bell Labs – Alcatel-Lucent, 600 Mountain Ave., Murray Hill, NJ 07974 
  2. 2.Dept. of Mathematics and Computing Science, TU Eindhoven, P.O. Box 513, 5600 MB EindhovenThe Netherlands

Personalised recommendations