Multi-party Stand-Alone and Setup-Free Verifiably Committed Signatures

  • Huafei Zhu
  • Willy Susilo
  • Yi Mu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4450)

Abstract

In this paper, we first demonstrate a gap between the security of verifiably committed signatures in the two-party setting and the security of verifiably committed signatures in the multi-party setting. We then extend the state-of-the-art security model of verifiably committed signatures in the two-party setting to that of multi-party setting. Since there exists trivial setup-driven solutions to multi-party verifiably committed signatures (e.g., two-signature based solutions, we propose solutions to the multi-party stand-alone verifiably committed signatures in the setup-free model, and show that our implementation is provably secure under the joint assumption that the underlying Zhu’s signature scheme is secure against adaptive chosen-message attack, Fujisaki-Okamoto’s commitment scheme is statistically hiding and computationally binding and Paillier’s encryption is semantically secure and one-way as well as the existence of collision-free one-way hash functions.

Keywords

multi-party setup-free stand-alone verifiably committed signatures 

References

  1. 1.
    Asokan, N., Schunter, M., Waidner, M.: Optimistic Protocols for Fair Exchange. In: ACM Conference on Computer and Communications Security, pp. 7–17. ACM Press, New York (1997)Google Scholar
  2. 2.
    Asokan, N., Shoup, V., Waidner, M.: Optimistic Fair Exchange of Digital Signatures (Extended Abstract). In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted Signatures from Bilinear Maps. In: Biham, E. (ed.) Advances in Cryptology – EUROCRPYT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Boudot, F.: Efficient Proofs that a Committed Number Lies in an Interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Boudot, F., Traore, J.: Efficient Publicly Verifiable Secret Sharing Schemes with Fast or Delayed Recovery. In: Varadharajan, V., Mu, Y. (eds.) Information and Communication Security. LNCS, vol. 1726, pp. 87–102. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Canetti, R.: Universally Composable Signature, Certification, and Authentication. In: CSFW 2004, p. 219 (2004)Google Scholar
  7. 7.
    Camenisch, J., Michels, M.: Proving in Zero-Knowledge that a Number Is the Product of Two Safe Primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 107–122. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Cramer, R., Shoup, V.: Signature scheme based on the Strong RAS assumption. In: 6th ACM Conference on Computer and Communication Security, Singapore, November 1999, ACM Press, New York (1999)Google Scholar
  9. 9.
    Damgård, I., Jurik, M.: Client/Server Tradeoffs for Online Elections. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 125–140. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Damgård, I., Fujisaki, E.: A Statistically-Hiding Integer Commitment Scheme Based on Groups with Hidden Order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Dodis, Y., Reyzin, L.: Breaking and Repairing Optimistic Fair Exchange from PODC 2003. In: ACM Workshop on Digital Rights Management (DRM), October 2003, ACM Press, New York (2003)Google Scholar
  12. 12.
    Fujisaki, E., Okamoto, T.: Statistically zero knowledge protocols to prove modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)Google Scholar
  13. 13.
    Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks. SIAM J. Comput. 17(2), 281–308 (1988)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential Aggregate Signatures and Multisignatures Without Random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  16. 16.
    Zhu, H.: New Digital Signature Scheme Attaining Immunity to Adaptive Chosen-message attack. Chinese Journal of Electronics 10(4), 484–486 (2001)Google Scholar
  17. 17.
    Zhu, H.: A formal proof of Zhu’s signature scheme 2003/155, http://eprint.iacr.org/
  18. 18.
    Zhu, H.: Constructing Committed Signatures from Strong-RSA Assumption in the Standard Complexity Model. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 101–114. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Zhu, H., Bao, F.: Stand-Alone and Setup-Free Verifiably Committed Signatures. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 159–173. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Zhu, H., Bao, F.: More on Stand-Alone and Setup-Free Verifiably Committed Signatures. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 148–158. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Huafei Zhu
    • 1
  • Willy Susilo
    • 2
  • Yi Mu
    • 2
  1. 1.Cryptography Lab, Institute for Infocomm Research, A-starSingapore
  2. 2.School of Computer Science and Software Engineering, University of WollongongAustralia

Personalised recommendations