Dimensionality Problem in the Visualization of Correlation-Based Data

  • Gintautas Dzemyda
  • Olga Kurasova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4432)

Abstract

A method for visualization the correlation-based data has been investigated. The advantage of this method lies in the possibility to restore the system of multidimensional vectors describing parameters from their correlation matrix (one vector for one parameter) and to visualise these vectors for the visual decision making on the similarity of the parameters. The goal of this research is to investigate the possibility to reduce the dimensionality of the vectors from the restored system and to evaluate the visualization quality in dependence on the reduction level.

Keywords

Correlation Matrix Dimensionality Problem Correlation Matrice Visualization Quality Codebook Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bezdek, J.C., Pal, N.R.: An index of topological preservation for feature extraction. Pattern Recognition 28, 381–391 (1995)CrossRefGoogle Scholar
  2. 2.
    Díaz Blanco, I., Cuadrado Vega, A.A., Diez González, A.B.: Correlation visualization of high dimensional data using topographic maps. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 1005–1010. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Dzemyda, G.: Clustering of parameters on the basis of correlations via simulated annealing. Control and Cybernetics (Special Issue on Simulated Annealing Applied to Combinatorial Optimization) 25(1), 55–74 (1996)MATHGoogle Scholar
  4. 4.
    Dzemyda, G.: Visualization of a set of parameters characterized by their correlation matrix. Computational Statistics and Data Analysis 36(1), 15–30 (2001)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dzemyda, G.: Visualization of the correlation-based environmental data. Environmetrics 15(8), 827–836 (2004)CrossRefGoogle Scholar
  6. 6.
    Dzemyda, G.: Multidimensional data visualization in the statistical analysis of curricula. Computational Statistics and Data Analysis 49, 265–281 (2005)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Dzemyda, G., Kurasova, O.: Heuristic approach for minimizing the projection error in the integrated mapping. European Journal of Operational Research 171(3), 859–878 (2006)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fautin, D.G., Buddemeier, R.W.: Biogeoinformatics of Hexacorallia (Corals, Sea Anemones, and Their Allies): Interfacing Geospatial, Taxonomic, and Environmental Data for a Group of Marine Invertebrates (2001), http://www.kgs.ukans.edu/Hexacoral/Envirodata/Correlations/correl1.htm
  9. 9.
    Ieno, E.N.: Las Comunidades Bentónicas de Fondos Blandos del Norte de la Provincia de Buenos Aires: Su rol Ecológico en el Ecosistema Costero. Tesis Doctoral Universidad Nacional de Mar del Plata Zoobenthic Species Measured in an Intertidal Area in Argentina (2000), http://www.brodgar.com/benthos.htm
  10. 10.
    Jolliffe, I.T.: Principal Component Analysis. Springer, Berlin (1986)Google Scholar
  11. 11.
    Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J.: SOM_PAK: The Self-Organizing Map Program Package. Technical Report A31, Helsinki University of Technology, Laboratory of Computer and Information Science, FIN-02150 Espoo, Finland (1996)Google Scholar
  12. 12.
    Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (2001)MATHGoogle Scholar
  13. 13.
    Murtagh, F.: Fionn Murtagh’s Multivariate data Analysis Software and Resources Page, http://newb6.u-strasbg.fr/~fmurtagh/mda-sw/
  14. 14.
    Sammon, J.W.: A nonlinear mapping for data structure analysis. IEEE Transactions on Computers 18, 401–409 (1969)CrossRefGoogle Scholar
  15. 15.
    Smith, R.L.: CBMS Course in Environmental Statistics (2001), http://www.stat.unc.edu/postscript/rs/envstat/env.html

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Gintautas Dzemyda
    • 1
    • 2
  • Olga Kurasova
    • 1
    • 2
  1. 1.Institute of Mathematics and Informatics, Akademijos St. 4, LT 08663, Vilnius 
  2. 2.Vilnius Pedagogical University, Studentu St. 39, LT 08106, VilniusLithuania

Personalised recommendations