Group-Foraging with Particle Swarms and Genetic Programming

  • Cecilia Di Chio
  • Paolo Di Chio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4445)


This paper has been inspired by two quite different works in the field of Particle Swarm theory. Its main aims are to obtain particle swarm equations via genetic programming which perform better than hand-designed ones on the group-foraging problem, and to provide insight into behavioural ecology. With this work, we want to start a new research direction: the use of genetic programming together with particle swarm algorithms in the simulation of problems in behavioural ecology.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alcock, J.: Animal Behavior. Sinauer Associates. Sinauer Associates, Sunderland (1998)Google Scholar
  2. 2.
    Di Chio, C., Poli, R., Di Chio, P.: Extending the Particle Swarm Algorithm to Model Animal Foraging Behaviour. In: Dorigo, M., et al. (eds.) ANTS 2006. LNCS, vol. 4150, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Giraldeau, L.A., Caraco, T.: Social Foraging Theory. Princeton University Press, Princeton (2000)Google Scholar
  4. 4.
    Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  5. 5.
    Krause, J., Ruxton, G.D.: Living in Groups. Oxford University Press, Oxford (2002)Google Scholar
  6. 6.
    MacFarland, D.: Animal behaviour. Longman, New York (1999)Google Scholar
  7. 7.
    Poli, R., Langdon, W.B., Holland, O.: Extending Particle Swarm Optimisation via Genetic Programming. In: Keijzer, M., et al. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 291–300. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Cecilia Di Chio
    • 1
  • Paolo Di Chio
    • 2
  1. 1.Department of Computer Science, University of EssexUK
  2. 2.Dipartimento di Sistemi e Istituzioni per l’Economia, University of L’AquilaItaly

Personalised recommendations