Advertisement

A Comprehensive View of Fitness Landscapes with Neutrality and Fitness Clouds

  • Leonardo Vanneschi
  • Marco Tomassini
  • Philippe Collard
  • Sébastien Vérel
  • Yuri Pirola
  • Giancarlo Mauri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4445)

Abstract

We define a set of measures that capture some different aspects of neutrality in evolutionary algorithms fitness landscapes from a qualitative point of view. If considered all together, these measures offer a rather complete picture of the characteristics of fitness landscapes bound to neutrality and may be used as broad indicators of problem hardness. We compare the results returned by these measures with the ones of negative slope coefficient, a quantitative measure of problem hardness that has been recently defined and with success rate statistics on a well known genetic programming benchmark: the multiplexer problem. In order to efficaciously study the search space, we use a sampling technique that has recently been introduced and we show its suitability on this problem.

Keywords

Genetic Program Boolean Function Fitness Landscape Neutral Network Solution Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altenberg, L.: The evolution of evolvability in genetic programming. In: Kinnear, K. (ed.) Advances in Genetic Programming, pp. 47–74. The MIT Press, Cambridge (1994)Google Scholar
  2. 2.
    Barnett, L.: Evolutionary Search on Fitness Landscapes with Neutral Networks. PhD thesis, University of Sussex (2003)Google Scholar
  3. 3.
    Collard, P., Clergue, M., Defoin-Platel, M.: Synthetic neutrality for artificial evolution. In: Artificial Evolution, pp. 254–265 (1999)Google Scholar
  4. 4.
    Collard, P., Verel, S., Clergue, M.: Local search heuristics: Fitness cloud versus fitness landscape. In: Mántaras, R.L.D., Saitta, L. (eds.) European Conference on Artificial Intelligence. ECAI04, Valence, Spain, pp. 973–974. IOS Press, Amsterdam (2004)Google Scholar
  5. 5.
    Collins, M.: Finding needles in haystacks is harder with neutrality. In: Beyer, H.-G., et al. (eds.) Proceedings of the 2005 conference on Genetic and evolutionary computation, vol. 2. GECCO 2005, Washington DC, USA, 25–29 June, pp. 1613–1618. ACM Press, New York (2005)CrossRefGoogle Scholar
  6. 6.
    Geard, N.: A comparison of neutral landscapes – nk, nkp and nkq. In: Congress on Evolutionary Computation (CEC’02), Honolulu, Hawaii, IEEE Press, Piscataway (2002)Google Scholar
  7. 7.
    Huynen, M.: Exploring phenotype space through neutral evolution. J. Mol. Evol. 43, 165–169 (1996)CrossRefGoogle Scholar
  8. 8.
    Koza, J.R.: Genetic Programming. The MIT Press, Cambridge (1992)MATHGoogle Scholar
  9. 9.
    Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)MATHCrossRefGoogle Scholar
  10. 10.
    Madras, N.: Lectures on Monte Carlo Methods. American Mathematical Society, Providence (2002)MATHGoogle Scholar
  11. 11.
    Reidys, C.M., Stadler, P.F.: Neutrality in fitness landscapes. Applied Mathematics and Computation 117(2–3), 321–350 (2001)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Schuster, P., Fontana, W., Stadler, P.F., Hofacker, I.L.: From sequences to shapes and back: a case study in RNA secondary structures. Proc. R. Soc. London B. 255, 279–284 (1994)CrossRefGoogle Scholar
  13. 13.
    Stadler, P.F.: Fitness landscapes. In: Lässig, M., Valleriani (eds.) Biological Evolution and Statistical Physics. Lecture Notes Physics, vol. 585, pp. 187–207. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Toussaint, M., Igel, C.: Neutrality: A necessity for self-adaptation. In: Congress on Evolutionary Computation (CEC’02), Honolulu, Hawaii, pp. 1354–1359. IEEE Press, Piscataway (2002)Google Scholar
  15. 15.
    Vanneschi, L.: Theory and Practice for Efficient Genetic Programming. Ph.D. thesis, Faculty of Sciences, University of Lausanne, Switzerland (2004)Google Scholar
  16. 16.
    Vanneschi, L., et al.: A quantitative study of neutrality in GP boolean landscapes. In: Keijzer, M., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, vol. 1. GECCO’06, pp. 895–902. ACM Press, New York (2006)CrossRefGoogle Scholar
  17. 17.
    Vanneschi, L., Tomassini, M., Collard, P., Clergue, M.: Fitness distance correlation in structural mutation genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 455–464. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Vanneschi, L., Tomassini, M., Collard, P., Vérel, S.: Negative slope coefficient. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 178–189. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Jones, D.F. (ed.) Proceedings of the Sixth International Congress on Genetics, vol.1, pp. 356–366 (1932)Google Scholar
  20. 20.
    Yu, T.: “Six degrees of separation” in boolean function networks with neutrality. In: Poli, R., et al. (eds.) GECCO 2004 Workshop Proceedings, Seattle, Washington, USA, 26-30 June (2004)Google Scholar
  21. 21.
    Yu, T., Miller, J.: Neutrality and the evolvability of boolean function landscape. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 204–217. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Yu, T., Miller, J.F.: Finding needles in haystacks is not hard with neutrality. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 13–25. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Leonardo Vanneschi
    • 1
  • Marco Tomassini
    • 2
  • Philippe Collard
    • 3
  • Sébastien Vérel
    • 3
  • Yuri Pirola
    • 1
  • Giancarlo Mauri
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e Comunicazione (D.I.S.Co.), University of Milan-Bicocca, MilanItaly
  2. 2.Computer Systems Department, University of Lausanne, LausanneSwitzerland
  3. 3.I3S Laboratory, University of Nice, Sophia AntipolisFrance

Personalised recommendations