Advertisement

An Analytical and Spatial Model of Foraging in a Swarm of Robots

  • Heiko Hamann
  • Heinz Wörn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4433)

Abstract

The foraging scenario is important in robotics, because it has many different applications and demands several fundamental skills from a group of robots, such as collective exploration, shortest path finding, and efficient task allocation. Particularly for large groups of robots emergent behaviors are desired that are decentralized and based on local information only. But the design of such behaviors proved to be difficult because of the absence of a theoretical basis. In this paper, we present a macroscopic model based on partial differential equations for the foraging scenario with virtual pheromones as the medium for communication. From the model, the robot density, the food flow and a quantity describing qualitatively the stability of the behavior can be extracted. The mathematical model is validated in a simulation with a large number of robots. The predictions of the model correspond well to the simulation.

Keywords

macroscopic model foraging swarm robotics mathematical analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arkin, R.C.: Motor schema based mobile robot navigation. International Journal of Robotics Research 8, 92–112 (1989)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bonabeau, E., Thraulaz, G., Fourcassi, V., Deneubourg, J.: The phase-ordering kinetics of cemetery organization in ants. Technical Report 98-01008, Santa Fe Institute (1998)Google Scholar
  3. 3.
    Cole, B.J., Cheshire, D.: Mobile Cellular Automata Models of Ant Behavior: Movement Activity of Leptothorax allardycei. American Naturalist 148, 1–15 (1996)CrossRefGoogle Scholar
  4. 4.
    Deneubourg, J.L., Aron, S., Goss, S., Pasteels, J.M.: The self-organizing exploratory pattern of the Argentine ant. Journal of Insect Behavior 3, 159–168 (1990)CrossRefGoogle Scholar
  5. 5.
    Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized shortcuts in the Argentine ant. Naturwissenschaften 76, 579–581 (1989)CrossRefGoogle Scholar
  6. 6.
    Jasmine Robot - Project Website (2006), http://www.swarmrobot.org/.
  7. 7.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research 5, 90–98 (1986)Google Scholar
  8. 8.
    Klein, J.: Continuous 3D Agent-Based Simulations in the breve Simulation Environment. In: Proceedings of NAACSOS Conference (North American Association for Computational, Social, and Organizational Sciences) (2003)Google Scholar
  9. 9.
    Lerman, K.: A model of adaptation in collaborative multi-agent systems. Adaptive Behavior 12, 187–198 (2004)CrossRefGoogle Scholar
  10. 10.
    Lerman, K., Galstyan, A.: Mathematical Model of Foraging in a Group of Robots: Effect of Interference. Autonomous Robots 13, 127–141 (2002)MATHCrossRefGoogle Scholar
  11. 11.
    Lerman, K., Jones, C., Galstyan, A., Mataric, M.: Analysis of Dynamic Task Allocation in Multi-Robot Systems. In: Int. J. of Robotics Research (2006)Google Scholar
  12. 12.
    Lerman, K., Martinoli, A., Galstyan, A.: A Review of Probabilistic Macroscopic Models for Swarm Robotic Systems. In: Sahin, E., Spears, W. (eds.) Swarm Robotics Workshop: State-of-the-art Survey, Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Martinoli, A., Easton, K., Agassounon, W.: Modeling Swarm Robotic Systems: A Case Study in Collaborative Distributed Manipulation. In: Siciliano, B. (ed.): Special Issue on Experimental Robotics, Int. Journal of Robotics Research 23, 415–436 (2004)Google Scholar
  14. 14.
    Panait, L., Luke, S.: Ant Foraging Revisited. In: Pollack, J., Bedau, M., Husbands, P., Ikegami, T. (eds.) ALife IX Proceedings, MIT Press, Cambridge (2004)Google Scholar
  15. 15.
    Schweitzer, F.: Brownian Agents and Active Particles. On the Emergence of Complex Behavior in the Natural and Social Sciences. Springer, New York (2003)Google Scholar
  16. 16.
    Schweitzer, F.: Brownian Agent Models for Swarm and Chemotactic Interaction. In: Polani, D., Kim, J., Martinetz, T. (eds.) Fifth German Workshop on Artificial Life, Akademische Verlagsgesellschaft Aka, Berlin (2002)Google Scholar
  17. 17.
    Schweitzer, F., Lao, K., Family, F.: Active Random Walker Simulate Trunk Trail Formation by Ants. BioSystems 41, 153–166 (1997)CrossRefGoogle Scholar
  18. 18.
    Seyfried, J., Szymanski, M., Bender, N., Estana, R., Thiel, M., Wörn, H.: The I-SWARM project: Intelligent Small World Autonomous Robots for Micro-manipulation. In: Sahin, E., Spears, W. (eds.) Swarm Robotics Workshop: State-of-the-art Survey, Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Spears, W.M., Gordon, D.F.: Using Artificial Physics to control agents. In: IEEE International Conference on Information, Intelligence, and Systems, IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  20. 20.
    Sugawara, K., Kazama, T., Watanabe, T.: Foraging Behavior of Interacting Robots with Virtual Pheromone. In: Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Los Alamitos (2004)Google Scholar
  21. 21.
    Theraulaz, G., Gautrais, J., Camazine, S., Deneubourg, J.L.: The formation of spatial patterns in social insects: from simple behaviours to complex structures. Phil. Trans. R. Soc. Lond. A 361, 1263–1282 (2003)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Heiko Hamann
    • 1
  • Heinz Wörn
    • 1
  1. 1.Institute for Process Control and Robotics, Universität Karlsruhe (TH), 76128 KarlsruheGermany

Personalised recommendations