DNA-Directed RNA polymerase

Part of the Springer Handbook of Enzymes book series (HDBKENZYMES, volume 38)


EC number

Systematic name

nucleoside-triphosphate:RNA nucleotidyltransferase (DNA-directed)

Recommended name

DNA-directed RNA polymerase


C RNA formation factors

DNA-dependent RNA nucleotidyltransferase

DNA-dependent RNA polymerase

DNA-dependent ribonucleate nucleotidyltransferase

Pol II

RNA formation factors, C

RNA nucleotidyltransferase

RNA nucleotidyltransferase (DNA-directed)

RNA polymerase

RNA polymerase I

RNA polymerase II

RNA polymerase III

RNA transcriptase





chloroplast soluble RNA polymerase

deoxyribonucleic acid-dependent ribonucleic acid polymerase

nucleotidyltransferase, ribonucleate

ribonucleate nucleotidyltransferase

ribonucleate polymerase

ribonucleic acid formation factors, C

ribonucleic acid nucleotidyltransferase

ribonucleic acid polymerase

ribonucleic acid transcriptase

ribonucleic polymerase

ribonucleic transcriptase


Additional information (see also EC and EC

CAS registry number



Ribonucleic Acid Clostridium Acetobutylicum Elongation Complex Lymphocystis Disease Virus Transcript Elongation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Weaver, R.F.; Blatti, S.P.; Rutter, W.J.: Molecular structures of DNA-dependent RNA polymerases (II) from calf thymus and rat liver. Proc. Natl. Acad. Sci. USA, 68, 2994–2999 (1971)PubMedCrossRefGoogle Scholar
  2. [2]
    Jacob, S.T.: Mammalian RNA polymerases. Prog. Nucl. Acid Res. Mol. Biol., 13, 93–126 (1973)Google Scholar
  3. [3]
    Borbely, G.; Schneider, G.J.: Cyanobacterial DNA-dependent RNA polymerase. Methods Enzymol., 167, 592–599 (1988)Google Scholar
  4. [4]
    Krueger, R.C.: RNA elongation by RNA polymerase II is not inhibited by N-ethylmaleimide or iodoacetamide. Arch. Biochem. Biophys., 278, 475–477 (1990)PubMedCrossRefGoogle Scholar
  5. [5]
    Edwards, A.M.; Darst, S.A.; Feaver, W.J.; Thompson, N.E.; Burgess, R.R.; Kornberg, R.D.: Purification and lipid-layer crystallization of yeast RNA polymerase II. Proc. Natl. Acad. Sci. USA, 87, 2122–2126 (1990)PubMedCrossRefGoogle Scholar
  6. [6]
    Steinberg, T.H.; Mathews, D.E.; Durbin, R.D.; Burgess, R.R.: Tagetitoxin: a new inhibitor of eukaryotic transcription by RNA polymerase III. J. Biol. Chem., 265, 499–505 (1990)PubMedGoogle Scholar
  7. [7]
    Deora, R.; Mira, T.K.: Purification and characterization of DNA dependent RNA polymerase from Staphylococcus aureus. Biochem. Biophys. Res. Commun., 208, 610–616 (1995)PubMedCrossRefGoogle Scholar
  8. [8]
    Rajasekhar, V.K.; Sun, E.; Meeker, R.; Wu, B.-W.; Tewari, K.T.: Highly purified pea chloroplast RNA polymerase transcribes both rRNA and mRNA genes. Eur. J. Biochem., 195, 215–228 (1991)PubMedCrossRefGoogle Scholar
  9. [9]
    Pich, A.; Baghl, H.: Purification and characterization of the DNA-dependent RNA polymerase from Clostridium acetobutylicum. J. Bacteriol., 173, 2120–2124 (1991)PubMedGoogle Scholar
  10. [10]
    Köck, J.; Cornelissen, A.W.C.A.: Characterization of the RNA polymerases of Crithidia fasciculata. Mol. Microbiol., 5, 835–842 (1991)PubMedCrossRefGoogle Scholar
  11. [11]
    de Mercoyrol, L.; Corda, Y.; Job, C; Job, D.: Accuracy of wheat-germ RNA polymerase II. General enzymatic properties and effect of template conformational transition from right-handed B-DNA to left-handed Z-DNA. Eur. J. Biochem., 206, 49–58 (1992)PubMedCrossRefGoogle Scholar
  12. [12]
    Patra, D.; Lafer, E.M.; Sousa, R.: Isolation and characterization of mutant bacteriophage T7 RNA polymerases. J. Mol. Biol., 224, 307–318 (1992)PubMedCrossRefGoogle Scholar
  13. [13]
    Wnendt, S.; Hartmann, R.K.; Ulbrich, N.; Erdmann, V.A.: Isolation and physical properties of the DNA-directed RNA polymerase from Thermus thermophilus HB8. Eur. J. Biochem., 191, 467–472 (1990)PubMedCrossRefGoogle Scholar
  14. [14]
    Heidelbach, M.; Skladny, H.; Schairer, H.U.: Purification of the DNA-dependent RNA polymerase from the myxobacterium Stigmatella aurantiaca. J. Bacteriol., 174, 2733–2735 (1992)PubMedGoogle Scholar
  15. [15]
    Zalenskaya, K.; Lee, J.; Gujuluva, C.N.; Shin, Y.K.; Slutsky, M.; Goldfarb, A.: Recombinant RNA polymerase: inducible overexpression, purification and assembly of Escherichia coli rpo gene products. Gene, 89, 7–12 (1990)PubMedCrossRefGoogle Scholar
  16. [16]
    Fujita, M.; Amemura, A.: Purification and characterization of a DNA-dependent RNA polymerase from Pseudomonas putida. Biosci. Biotechnol. Biochem., 56, 1797–1800 (1992)PubMedCrossRefGoogle Scholar
  17. [17]
    Ding, H.-F.; Winkler, H.H.: Purification and partial characterization of the DNA-dependent RNA polymerase from Rickettsia prowazekii. J. Bacteriol., 172, 5624–5630 (1990)PubMedGoogle Scholar
  18. [18]
    Azuma, Y.; Yamagishi, M.; Ishihama, A.: Subunits of the Schizosaccharomyces pombe RNA polymerase II: enzyme purification and structure of the subunit 3 gene. Nucleic Acids Res., 21, 3749–3754 (1993)PubMedCrossRefGoogle Scholar
  19. [19]
    Palm, P.; Schleper, C.; Arnold-Ammer, I.; Holz, I.; Meier, T.; Lottspeich, F.; Zillig, W.: The DNA-dependent RNA-polymerase of Thermotoga maritima; characterisation of the enzyme and the DNA-sequence of the genes for the large subunits. Nucleic Acids Res., 21, 4904–4908 (1993)PubMedCrossRefGoogle Scholar
  20. [20]
    Chung, Y.J.; Sousa, R.; Rose, J.P.; Lafer, E.; Wang, B.C.: Crystallographic structure of phage T7 RNA polymerase at resolution of 4.0 A. Struct. Funct. Nucleic Acids Proteins (Wu, F. Y.-H., Wu, C.-W., Eds.) Raven, New York, 55–59 (1990)Google Scholar
  21. [21]
    Sethi, V.S.: Structure and function of DNA-dependent RNA-polymerase. Prog. Biophys. Mol. Biol., 23, 67–101 (1971)PubMedCrossRefGoogle Scholar
  22. [22]
    Boyer, A.S.; Hallick, R.B.: Purification and characterization of a soluble DNA-dependent chloroplast RNA polymerase from Pisum sativum. Plant Sci., 137, 13–32 (1998)CrossRefGoogle Scholar
  23. [23]
    Kaarbo, M.; Crane, D.I.; Murrell, W.G.: Isolation and characterisation of a chick cDNA encoding the RNA polymerase common subunit RPB6. DNA Seq., 11, 155–162 (2000)PubMedGoogle Scholar
  24. [24]
    Sadhukhan, P.K.; Cgakraborty, A.K.; Dasgupta, A.; Majumder, H.K.: Chromatographic separation of DNA dependent RNA polymerases and molecular properties of RNA polymerase II from a Leishmania spp. Mol. Cell. Biochem., 171, 105–114 (1997)PubMedCrossRefGoogle Scholar
  25. [25]
    Huang, Y; Beaudry A.; McSwiggen, J.; Sousa, R.: Determinants of ribose specificity in RNA polymerization: effects of Mn2+ and deoxynucleoside monophosphate incorporation into transcripts. Biochemistry, 36, 13718–13728 (1997)PubMedCrossRefGoogle Scholar
  26. [26]
    Müller, M.; Schnitzler, P.; Koonin, E.V.; Darai, G.: Identification and properties of the largest subunit of the DNA-dependent RNA polymerase of fish lymphocystis disease virus: dramatic difference in the domain organization in the family Iridoviridae. J. Gen. Virol., 76(Pt 5), 1099–1107 (1995)PubMedCrossRefGoogle Scholar
  27. [27]
    Klenk, H.-P.; Meier, T.-D.; Durovic, P.; Schwass, V.; Lottspeich, F.; Dennis, P.P.; Zillig, W.: RNA Polymerase of Aquifex pyrophilus: Implications for the evolution of the bacterial rpoBC operon and extremely termophilic bacteria. J. Mol. Evol., 48, 528–541 (1999)PubMedCrossRefGoogle Scholar
  28. [28]
    Schultz, P.; Celia, H.; Riva, M.; Darst, S.A.; Colin, P.; Kornberg, R.D.; Sentenac, A.; Oudet, P.: Structural study of the yeast RNA polymerase A electron microscopy of lipid-bound molecules and two-dimensional crystals. J. Mol. Biol., 216, 353–362 (1992)CrossRefGoogle Scholar
  29. [29]
    Gnatt, A.L.; Cramer, P.; Fu, J.; Bushnell, D.A.; Kornberg, R.D.: Structural basis of transcription: An RNA polymerase II elongation complex at 3.3 A resolution. Science, 292, 1876–1881 (2001)PubMedCrossRefGoogle Scholar
  30. [30]
    Xue, Y; Hogan, B.P.; Erie, D.A.: Purification and initial characterization of RNA polymerase from Thermus thermophilus strain HB8. Biochemistry, 39, 14356–14362 (2000)PubMedCrossRefGoogle Scholar
  31. [31]
    Schultz, P.; Celia, H.; Riva, M.; Sentenac, A.; Oudet, P.: Three-dimensional model of yeast RNA polymerase I determined by electron microscopy of two-dimensional crystals. EMBO J., 12, 2601–2607 (1993)PubMedGoogle Scholar
  32. [32]
    Gnatt, A.; Fu, J.; Kornberg, R.D.: Formation and crystallization of yeast RNA polymerase II elongation complexes. J. Biol. Chem., 272, 30799–30805 (1997)PubMedCrossRefGoogle Scholar
  33. [33]
    Mohamed, M.R.; Niles, E.G.: Interaction between nucleoside triphosphate phosphohydrolase I and the H4L subunit of the viral RNA polymerase is required for vaccinia virus early gene transcript release. J. Biol. Chem., 275, 25798–25804 (2000)PubMedCrossRefGoogle Scholar
  34. [34]
    Tornaletti, S.; Patrick, S.M.; Turchi, J.J.; Hanawalt, P.C.: Behavior of T7 RNA polymerase and Mammalian RNA polymerase II at site-specific cisplatin adducts in the template DNA.J. Biol. Chem., 278, 35791–35797 (2003)PubMedCrossRefGoogle Scholar
  35. [35]
    Imburgio, D.; Anikin, M.; McAllister, W.T.: Effects of substitutions in a conserved DX2GR sequence motif, found in many DNA-dependent nucleotide polymerases, on transcription by T7 RNA polymerase. J. Mol. Biol., 319, 37–51 (2002)PubMedCrossRefGoogle Scholar
  36. [36]
    Imburgio, D.; Anikin, M.; McAllister, W.T.: Effects of substitutions in a conserved DX2GR sequence motif, found in many DNA-dependent nucleotide polymerases, on transcription by T7 RNA polymerase. J. Mol. Biol., 319, 37–51 (2002)PubMedCrossRefGoogle Scholar
  37. [37]
    Woody, A.Y.M.; Osumi-Davis, P.A.; Hiremath, M.M.; Woody, R.W: Pre-steady-state and steady-state kinetic studies on transcription initiation catalyzed by T7 RNA polymerase and its active-site mutants K631R and Y639F. Biochemistry, 37, 15958–15964 (1998)PubMedCrossRefGoogle Scholar
  38. [38]
    Callaci, S.; Heyduk, T.: Conformation and DNA binding properties of a single-stranded DNA binding region of sigma 70 subunit from Escherichia coli RNA polymerase are modulated by an interaction with the core enzyme. Biochemistry, 37, 3312–3320 (1998)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Personalised recommendations