Advertisement

Improve Ranking by Using Image Information

  • Qing Yu
  • Shuming Shi
  • Zhiwei Li
  • Ji-Rong Wen
  • Wei-Ying Ma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4425)

Abstract

This paper explores the feasibility of including image information embedded in Web pages in relevance computation to improve search performance. In determining the ranking of Web pages against a given query, most (if not all) modern Web search engines consider two kinds of factors: text information (including title, URL, body text, anchor text, etc) and static ranking (e.g. PageRank [1]). Although images have been widely used to help represent Web pages and carry valuable information, little work has been done to take advantage of them in computing the relevance score of a Web page given a query. We propose, in this paper, a framework to contain image information in ranking functions. Preliminary experimental results show that, when image information is used properly, ranking results can be improved.

Keywords

Web search image information image importance relevance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brin, S., Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: WWW-7 (1998)Google Scholar
  2. 2.
    Cai, D., et al.: Hierarchical Clustering of WWW Image Search Results Using Visual, Textual and Link Information. In: Proc. Of the 12th ACM international conference on Multimedia, ACM Press, New York (2004)Google Scholar
  3. 3.
    Frankel, C., Swain, M., Athitsos, V.: Webseer: an Image Search Engine for the World Wide Web. University of Chicago Technical Report TR96-14 (1996)Google Scholar
  4. 4.
    Hu, J., Bagga, A.: Categorizing Images in Web Documents. In: SPIE Document Recognition and Retrieval (DR&R X), Santa Clara (January 2003)Google Scholar
  5. 5.
    Ivory, M.Y., Hearst, M.A.: Improving Web Site Design. IEEE Internet Computing 6(2), 56–63 (2002)CrossRefGoogle Scholar
  6. 6.
    Jarvelin, K., Kekalainen, J.: IR evaluation methods for retrieving highly relevant documents. In: SIGIR (2000)Google Scholar
  7. 7.
    Joachims, T.: Optimizing Search Engines Using Clickthrough Data. In: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM Press, New York (2002)Google Scholar
  8. 8.
    Lempel, R., Soffer, A.: PicASHOW: Pictorial Authority Search by Hyperlinks on the Web. In: Proc. 10th Int. World Wide Web Conf, Hong Kong, China, pp. 438–448 (2001)Google Scholar
  9. 9.
    Robertson, S.E., Walker, S., Beaulieu, M.: Okapi at TREC–7: Automatic Ad-hoc, Filtering, VLC and Filtering Tracks. In: Proceedings of TREC’99 (1999)Google Scholar
  10. 10.
    Shi, S., Song, R., Wen, J.R.: Latent Additivity: Combining Homogeneous Evidence. Technique report, MSR-TR-2006-110, Microsoft Research (August 2006)Google Scholar
  11. 11.
    Smith, J.R., Chang, S.: VisualSeek: A Fully Automated Content-Based Image Query System. In: Proc. ACM Conf. Multimedia, ACM Press, New York (1996)Google Scholar
  12. 12.
    Song, R., et al.: Learning Block Importance Models for Web Pages. In: WWW’2004 (2004)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Qing Yu
    • 1
  • Shuming Shi
    • 1
  • Zhiwei Li
    • 1
  • Ji-Rong Wen
    • 1
  • Wei-Ying Ma
    • 1
  1. 1.Microsoft Research Asia 

Personalised recommendations