Fully Automated Stability Verification for Piecewise Affine Systems

  • Jens Oehlerking
  • Henning Burchardt
  • Oliver Theel
Conference paper

DOI: 10.1007/978-3-540-71493-4_74

Part of the Lecture Notes in Computer Science book series (LNCS, volume 4416)
Cite this paper as:
Oehlerking J., Burchardt H., Theel O. (2007) Fully Automated Stability Verification for Piecewise Affine Systems. In: Bemporad A., Bicchi A., Buttazzo G. (eds) Hybrid Systems: Computation and Control. HSCC 2007. Lecture Notes in Computer Science, vol 4416. Springer, Berlin, Heidelberg

Abstract

One of the most desired properties of a closed-loop control system is stability, as a stable loop is inherently resistant to outside disturbances. Of particular interest is the notion of asymptotic stability. An asymptotically stable system will always converge towards an equilibrium state, once the disturbances have ceased. For hybrid systems, however, there is no known method for proving asymptotic stability directly from the system model. Instead, a promising approach is the use of Lyapunov functions, which can be utilized to show stability indirectly. A Lyapunov function is a formalization of an abstract “energy function” of the system. If the “energy” of the system monotonically decreases over time, converging towards zero in the designated equilibrium state, then a system is asymptotically stable. The existence of such a Lyapunov function proves asymptotic stability, but finding such a function for a hybrid system is not a simple task.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Jens Oehlerking
    • 1
  • Henning Burchardt
    • 1
  • Oliver Theel
    • 1
  1. 1.Department of Computing Science, University of OldenburgGermany

Personalised recommendations