A Hybrid Bellman Equation for Bimodal Systems

  • Peter Caines
  • Magnus Egerstedt
  • Roland Malhame
  • Angela Schöllig
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4416)


In this paper we present a dynamic programming formulation of a hybrid optimal control problem for bimodal systems with regional dynamics. In particular, based on optimality-zone computations, a framework is presented in which the resulting hybrid Bellman equation guides the design of optimal control programs with, at most, N discrete transitions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bemporad, A., Borrelli, F., Morari, M.: On the Optimal Control Law for Linear Discrete Time Hybrid Systems. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Branicky, M., Borkar, V., Mitter, S.: A Unified Framework for Hybrid Control: Model and Optimal Control Theory. IEEE Transactions on Automatic Control 43(1), 31–45 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Caines, P., Shaikh, S.: Optimality Zone Algorithms for Hybrid Systems: Efficient Algorithms for Optimal Location and Control Computation. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Egerstedt, M., Wardi, Y., Axelsson, H.: Transition-Time Optimization for Switched Systems. IEEE Transactions on Automatic Control 51(1), 110–115 (2006)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Hedlund, S., Rantzer, A.: Optimal Control of Hybrid System. In: Proceedings of the IEEE Conference on Decision and Control, Phoenix, AZ, December 1999, pp. 3972–3977. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  6. 6.
    Sussmann, H.J.: Set-Valued Differentials and the Hybrid Maximum Principle. In: IEEE Conference on Decision and Control, vol. 1, pp. 558–563. IEEE, Los Alamitos (2000)Google Scholar
  7. 7.
    Xu, X., Antsaklis, P.: Optimal Control of Switched Autonomous Systems. In: IEEE Conference on Decision and Control, Las Vegas, NV, Dec. 2002, IEEE Computer Society Press, Los Alamitos (2002)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Peter Caines
    • 1
  • Magnus Egerstedt
    • 2
  • Roland Malhame
    • 3
  • Angela Schöllig
    • 4
  1. 1.McGill University, Electrical and Computer Engineering, Montreal, Quebec, H3A-2A7Canada
  2. 2.Georgia Institute of Technology, Electrical and Computer Engineering, Atlanta, GA 30323USA
  3. 3.Ecole Polytechnique Motreal, Electrical Engineering, Montreal, Quebec, H3C 3A7Canada
  4. 4.Georgia Institute of Technology, Civil and Environmental Engineering, Atlanta, GA 30323USA

Personalised recommendations